scholarly journals Environmental Aspects of the Use of Hedera helix Extract in Bioremediation Process

2019 ◽  
Vol 7 (2) ◽  
pp. 43 ◽  
Author(s):  
Agata Zdarta ◽  
Wojciech Smułek ◽  
Amanda Pacholak ◽  
Ewa Kaczorek

This paper analyzes the impact of saponins from English ivy leaves on the properties of environmental bacterial strains and hydrocarbon degradation ability. For this purpose, two bacterial strains, Raoultella ornitinolytica M03 and Acinetobacter calcoaceticus M1B, have been used in toluene, 4-chlorotoluene, and α,α,α-trifluorotoluene biodegradation supported by Hedera helix extract. Moreover, theeffects of ivy exposition on cell properties and extract toxicity were investigated. The extract was found to cause minor differences in cell surface hydrophobicity, membrane permeability, and Zeta potential, although it adhered to the cell surface. Acinetobacter calcoaceticus M1B was more affected by the ivy extract; thus, the cells were more metabolically active and degraded saponins at greater amounts. Although the extract influenced positively the cells’ viability in the presence of hydrocarbons, it could have been used by the bacteria as a carbon source, thus slowing down hydrocarbon degradation. These results show that the use of ivy saponins for hydrocarbon remediation is environmentally acceptable but should be carefully analyzed to assess the efficiency of the selected saponins-rich extract in combination with selected bacterial strains.

Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 338
Author(s):  
Agata Zdarta ◽  
Amanda Pacholak ◽  
Marta Galikowska ◽  
Wojciech Smułek ◽  
Ewa Kaczorek

The effects of hydrocarbons sorption on sand and saponins presence in the system on butylbenzene and tert-butylbenzene biological degradation was investigated. Additionally, the impact of saponins-containing plant extracts on environmental microorganisms was studied. Results of cell surface property measurements in samples with saponins only revealed changes in cell surface hydrophobicity, electrokinetic potential and membrane permeability when compared to corresponding values for glucose-grown microbes. Subsequently, in sorption experiments, the hydrocarbon adsorption kinetics in bacteria-free samples were better explained with the pseudo-second order kinetic model as compared to the pseudo-first order and intraparticular diffusion models. Moreover, the equilibrium data fitted better to the Freundlich isotherm for both benzene derivatives. In the samples combining hydrocarbons sorption and biological degradation in the presence of saponins, alkane-substituted hydrocarbons removal was accelerated from 40% to 90% after 14 days and the best surfactant in this aspect was S. officinalis extract.


Author(s):  
Yi Wang ◽  
Lakshman P Samaranayake ◽  
Gary A Dykes

Abstract We hypothesized that the initial events leading to biofilm formation by bacteria, in general, are predominantly mediated by cell surface physicochemical interactions, and that natural products can impact the process by altering cell surface physicochemical properties. We exemplified this phenomenon using Actinomyces naeslundii as the model organism, and using tea products to modify its cell surface physicochemical properties. To test the hypothesis, a non-linear multiple regression model incorporating a normal distribution curve was constructed to explain the impact of tea extracts on the physiochemical processes of biofilm formation by A. naeslundii. The model utilized tea extract-induced changes in cell surface physicochemical properties as independent variables, and the corresponding biofilm formation as a dependent variable. Five different tea extracts were used to treat A. naeslundii, and their impact on the cell surface hydrophobicity, charge, auto-aggregation, attachment and biofilm formation on four different hard surfaces were measured and the data were used to construct the model. The established model was then tested in independent experiments involving other plant extracts and purified phytochemicals. Experimental results showed that the tea extracts significantly reduced cell surface hydrophobicity (by up to 21.3%), increased cell surface charge and auto-aggregation (by up to 4.5 mV and 14.9%, respectively), inhibited attachment (by 0.6–2.5 log CFU cm−2) and affected biofilm formation (by up to 0.6 log CFU cm−2). The model indicated that both cell surface hydrophobicity and charge played an important role in bacterial auto-aggregation and attachment, and that the latter two phenomena significantly correlated with subsequent biofilm development. The accuracy of the model construct was approximately 64%. This modelling approach can be employed for other microbial colonization systems to predict biofilm formation, and to study the impact of cell surface physicochemical properties in biofilm development.


Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 472 ◽  
Author(s):  
Amanda Pacholak ◽  
Wojciech Smułek ◽  
Agata Zdarta ◽  
Agnieszka Zgoła-Grześkowiak ◽  
Ewa Kaczorek

The use of diphenyl ether (DE) and its 4-monohalogenated derivatives (4-HDE) as flame retardants, solvents, and substrates in biocide production significantly increases the risk of ecosystem contamination. Their removal is important from the point of view of environmental protection. The aim of this study was to evaluate the degradation processes of DE and 4-HDE by enzymes of the environmental bacterial strains under one-substrate and co-metabolic conditions. The study is focused on the biodegradation of DE and 4-HDE, the enzymatic activity of microbial strains, and the cell surface properties after contact with compounds. The results show that the highest biodegradation (96%) was observed for 4-chlorodiphenyl ether in co-metabolic culture with P. fluorescens B01. Moreover, the activity of 1,2-dioxygenase during degradation of 4-monohalogenated diphenyl ethers was higher than that of 2,3-dioxygenase for each strain tested. The presence of a co-substrate provoked changes in dioxygenase activity, resulting in the increased activity of 1,2-dioxygenase. Moreover, the addition of phenol as a co-substrate allowed for increased biodegradation of the diphenyl ethers and noticeable modification of the cell surface hydrophobicity during the process. All observations within the study performed have led to a deeper understanding of the contaminants’ biodegradation processes catalyzed by environmental bacteria.


Author(s):  
Amanda Pacholak ◽  
Wojciech Smułek ◽  
Agnieszka Zgoła-Grześkowiak ◽  
Ewa Kaczorek

The continuous exposure of living organisms and microorganisms to antibiotics that have increasingly been found in various environmental compartments may be perilous. One group of antibacterial agents that have an environmental impact that has been very scarcely studied is nitrofuran derivatives. Their representative is nitrofurantoin (NFT)—a synthetic, broad-spectrum antibiotic that is often overdosed. The main aims of the study were to: (a) isolate and characterize new microbial strains that are able to grow in the presence of NFT, (b) investigate the ability of isolates to decompose NFT, and (c) study the impact of NFT on microbial cell properties. As a result, five microbial species were isolated. A 24-h contact of bacteria with NFT provoked modifications in microbial cell properties. The greatest differences were observed in Sphingobacterium thalpophilum P3d, in which a decrease in both total and inner membrane permeability (from 86.7% to 48.3% and from 0.49 to 0.42 µM min−1) as well as an increase in cell surface hydrophobicity (from 28.3% to 39.7%) were observed. Nitrofurantoin removal by selected microbial cultures ranged from 50% to 90% in 28 days, depending on the bacterial strain. Although the isolates were able to decompose the pharmaceutical, its presence significantly affected the bacterial cells. Hence, the environmental impact of NFT should be investigated to a greater extent.


2019 ◽  
Vol 366 (12) ◽  
Author(s):  
Carsten Nachtigall ◽  
Carmen Weber ◽  
Sandra Rothenburger ◽  
Doris Jaros ◽  
Harald Rohm

ABSTRACT The microbial adhesion to hydrocarbons (MATH) test is one of the most common method to determine the hydrophobicity of cell surfaces. Despite its prevalence, no standard test parameters are used in literature, making a direct comparison of data almost impossible. Criticism also focuses on test parameters that may mask hydrophobic interactions and hence lead to erroneous test results. We methodically investigated the impact of different MATH test parameters on the calculation of the cell surface hydrophobicity of Streptococcus thermophilus, a widespread exopolysaccharide-producing lactic acid bacterium used in the production of fermented milk products. Besides composition and ionic strength of the buffer used for cell re-suspension, we observed a pronounced time dependency of the turbidity of the cell suspension during phase separation due to sedimentation and/or cell lysis. A new modification of the MATH assay was applied to enable the determination of cell surface hydrophobicity of long chain-forming bacteria. As the cell surface hydrophobicity was not altered during exponential growth phase, we assume that the cell surface and its capsular exopolysaccharide layer are not changed during cultivation.


2021 ◽  
Author(s):  
Sheyda Azimi ◽  
Jacob Thomas ◽  
Sara E. Cleland ◽  
Jennifer E. Curtis ◽  
Joanna B. Goldberg ◽  
...  

AbstractIt is now well established that bacteria live in structured aggregates during chronic infections, where they evolve to adapt to the host environment in order to evade host immune responses and therapeutic interventions. Despite recent developments on how the physical properties of polymers impact on aggregate formation, changes in bacterial properties to overcome this have been overlooked. Here we show that even with physical entropic forces imposed by polymers in a sputum medium environment, lipopolysaccharide (LPS) plays a crucial role in aggregate assembly in Pseudomonas aeruginosa by altering the hydrophobicity of the cell surface. Our findings highlight that in chronic infections such as the polymer rich (eDNA and mucin) airways in cystic fibrosis (CF) lungs, O-antigen can dictate the type of aggregate assembly allowing the cells to overcome entropic forces, and sheds new light on the benefits or loss of O-antigen in polymer rich environments such as CF lungs.ImportanceDuring chronic infection, several factors contribute to the biogeography of microbial communities. Heterogeneous populations of Pseudomonas aeruginosa form aggregates in cystic fibrosis airways, however, the impact of this population heterogeneity on spatial organization and aggregate assembly is not well understood. In this study we found that changes in O-antigen structure determine the spatial organization of P. aeruginosa cells by altering the relative cell surface hydrophobicity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Engy A. Elekhnawy ◽  
Fatma I. Sonbol ◽  
Tarek E. Elbanna ◽  
Ahmed A. Abdelaziz

Abstract Background The percentage of the multidrug resistant Klebsiella pneumoniae clinical isolates is increasing worldwide. The excessive exposure of K. pneumoniae isolates to sublethal concentrations of biocides like benzalkonium chloride (BAC) in health care settings and communities could be one of the causes contributing in the global spread of antibiotic resistance. Results We collected 50 K. pneumoniae isolates and these isolates were daily exposed to gradually increasing sublethal concentrations of BAC. The consequence of adaptation to BAC on the cell surface hydrophobicity (CSH) and biofilm formation of K. pneumoniae isolates was explored. Remarkably, 16% of the tested isolates showed an increase in the cell surface hydrophobicity and 26% displayed an enhanced biofilm formation. To evaluate whether the influence of BAC adaptation on the biofilm formation was demonstrated at the transcriptional level, the RT-PCR was employed. Noteworthy, we found that 60% of the tested isolates exhibited an overexpression of the biofilm gene (bssS). After sequencing of this gene in K. pneumoniae isolates before and after BAC adaptation and performing pairwise alignment, 100% identity was detected; a finding that means the absence of mutation after adaptation to BAC. Conclusion This study suggests that the widespread and increased use of biocides like BAC at sublethal concentrations has led to an increase biofilm formation by K. pneumoniae isolates. Enhanced biofilm formation could result in treatment failure of the infections generated by this pathogen.


Sign in / Sign up

Export Citation Format

Share Document