scholarly journals Effects of Different Yeasts on Physicochemical and Oenological Properties of Red Dragon Fruit Wine Fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans

2020 ◽  
Vol 8 (3) ◽  
pp. 315 ◽  
Author(s):  
Xiaohui Jiang ◽  
Yuyun Lu ◽  
Shao Quan Liu

A new type of fruit wine made from red dragon fruit juice was produced through alcoholic fermentation (AF) with different yeasts: Saccharomyces cerevisiae EC-1118, Torulaspora delbrueckii Biodiva and Lachancea thermotolerans Concerto. Complete AF with similar fermentation rates in terms of sugar utilisation and ethanol production (8–9%, v/v) was achieved by three yeast strains. T. delbrueckii produced a significantly lower amount of glycerol and acetic acid, while L. thermotolerans produced more lactic and succinic acids. In addition, the two non-Saccharomyces strains were more efficient in proline utilisation. For volatile compounds, S. cerevisiae produced the highest amounts of esters, while T. delbrueckii produced more higher alcohols, isoamyl acetate and terpenes. On the other hand, AF caused significant degradation of betacyanin pigments and total phenolic compounds. Nevertheless, better retention of antioxidant activity and colour stability was found in L. thermotolerans and T. delbrueckii fermented wines than that of S. cerevisiae. This study suggested that it is feasible to use pure non-Saccharomyces yeast to produce red dragon fruit wine for commercialization.

2020 ◽  
Vol 8 (3) ◽  
pp. 323 ◽  
Author(s):  
Lanlan Hu ◽  
Rui Liu ◽  
Xiaohong Wang ◽  
Xiuyan Zhang

Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.


1992 ◽  
Vol 55 (3) ◽  
pp. 192-197 ◽  
Author(s):  
ERICH MAIMER ◽  
MARTIN BUSSE

Growth and gas formation by Saccharomyces cerevisiae (2 strains), Zygosaccharomyces rouxii (2 strains), Hansenula fabianii (2 strains), Torulaspora delbrueckii (1 strain), and Candida parapsilosis (1 strain) were studied in homogenized processed strawberries. These strawberries had 15, 30, 45, and 55° Brix in combination with 0, 50, 100, 200, 400, and 600 ppm sorbic acid. Z. rouxii showed the highest tolerance for sorbic acid, followed by S. cerevisiae and T. delbrueckii; these strains also produced gas within a short time. The highest osmotolerance was observed for Z. rouxii. Processed fruits with 55° Brix and 200 ppm sorbic acid or with 45° Brix and ≥400 ppm sorbic acid did not allow growth and gas formation by any of the yeast strains.


2020 ◽  
Vol 119 (2) ◽  
pp. 054
Author(s):  
Alfonso Emanuel Carrizo Villoldo ◽  
Carla Belén Carrizo ◽  
Marcelo Rafael Benítez Ahrendts ◽  
Leonor Carrillo

Se buscó el aislamiento de levaduras de muestras de miel de la Provincia de Jujuy, Argentina, con el objetivo de utilizarlas in vitro como antagonistas de mohos patógenos pre- y poscosecha, de diferentes cultivos de interés, como, cítricos, maíz, maní y caña de azúcar. Se utilizó miel, ya que la misma puede actuar como medio selectivo de cepas inocuas y tolerantes a distintos estrés abióticos, como bajo pH, elevada presión osmótica, presencia de fitoquímicos, entre otros. Se logró aislar un total de 15 levaduras de 25 muestras de mieles. Las levaduras fueron identificadas como: Candida parapsilosis, Zygosaccharomyces baili, Zygosaccharomyces mellis, Zygosaccharomyces rouxii, Tausonia pullulans, Lachancea thermotolerans, Lachancea fermentati, Torulaspora delbrueckii y Saccharomyces cerevisiae. Todos los géneros se encontraron descriptos como presentes en la miel, provenientes, ya sea, de fuentes primarias de contaminación o del ambiente circundante. De los aislamientos obtenidos se probó el antagonismo in vitro, por disminución del crecimiento micelial de los mohos: Penicillium italicum, P. ulaiense, Aspergillus parasiticus y Fusarium sacchari. Lachancea thermotolerans, fue el único aislamiento que presentó antagonismo hacia todos los mohos ensayados. Candida parapsilosis manifestó antagonismo hacia P. italicum; Lachancea fermentati hacia P. ulaiense; Z. mellis frente P. ulaiense y uno de los aislamientos de T. delbrueckii frente a P. italicum y P. ulaiense. Se podrían utilizar las levaduras antagonistas en futuros ensayos in vivo, en vistas al diseño de un biofungicida activo contra mohos patógenos de cultivos, en la etapa de producción a campo o durante el almacenamiento.


2020 ◽  
Vol 10 (19) ◽  
pp. 6722
Author(s):  
Alice Agarbati ◽  
Laura Canonico ◽  
Francesca Comitini ◽  
Maurizio Ciani

The application of yeast strains that are low producers of sulfur compounds is actually required by winemakers for the production of organic wine. This purpose could be satisfied using a native Saccharomyces cerevisiae strain improved for oenological aptitudes. Moreover, to improve the aromatic complexity of wines, sequential fermentations carried out with S. cerevisiae/non-Saccharomyces yeast is widely used. For these reasons, in the present work an improved native S. cerevisiae low producer of sulfite and sulfide compounds was evaluated in pure and in sequential fermentation with a selected Torulaspora delbrueckii. Additionally, the influence of grape juices coming from three different vintages under winery conditions was evaluated. In pure fermentation, improved native S. cerevisiae strain exhibited a behavior related to vintage, highlighting that the composition of grape juice affects the fermentation process. In particular, an increase in ethyl octanoate (vintage 2017) and phenyl ethyl acetate (vintage 2018) was detected. Moreover, isoamyl acetate was highly consistent and could be a distinctive aroma of the strain. The sequential fermentation T. delbrueckii/S. cerevisiae determined an increase in aroma compounds such as phenyl ethyl acetate and ethyl hexanoate. In this way, it was possible to produce Verdicchio wine with reduced sulfites and characterized by a peculiar aromatic taste.


Author(s):  
Daniel Einfalt

Abstract The use of different yeast strains contributes to obtain insights into beer products with diverse sensory characteristics. In this study, three yeast species of different genera were selected to evaluate their fermentation performance and sensory profile for barley-sorghum beer production. Baley-sorghum wort was produced with 12.5°P and fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Differences were observed in terms of fermentation time and ability to ferment maltose. S. cerevisiae attenuated initial maltose concentration within 72 h, while M. pulcherrima and T. delbrueckii performed fermentation within 120 and 192 h, respectively. Both yeast strains simultaneously produced 11% and 23% lower ethanol concentrations, compared to S. cerevisiae with 37.9 g/L. Wort fermented with T. delbrueckii showed residual maltose concentration of 19.7 ± 4.1 g/L, resulting in significantly enhanced beer sweetness. S. cerevisiae produced significantly increased levels of higher alcohols, and obtained the highest scores for the sensory attribute body perception. Beer produced with T. delbrueckii contained significantly lower fermentative 2,3-butanediol and 2-methyl-1-butanol volatiles; this beer also showed reduced body perception. Beer conditioned with T. delbrueckii was significantly preferred over M. pulcherrima. Besides S. cerevisiae with high fermentative power, T. delbrueckii and M. pulcherrima were found to have reduced maltose fermenting abilities and provide significantly different sensory attributes to barley-sorghum beers.


1998 ◽  
Vol 64 (10) ◽  
pp. 4076-4078 ◽  
Author(s):  
Kiyoshi Fukuda ◽  
Nagi Yamamoto ◽  
Yoshifumi Kiyokawa ◽  
Toshiyasu Yanagiuchi ◽  
Yoshinori Wakai ◽  
...  

ABSTRACT Isoamyl acetate is synthesized from isoamyl alcohol and acetyl coenzyme A by alcohol acetyltransferase (AATFase) inSaccharomyces cerevisiae and is hydrolyzed by esterases at the same time. We hypothesized that the balance of both enzyme activities was important for optimum production of isoamyl acetate in sake brewing. To test this hypothesis, we constructed yeast strains with different numbers of copies of the AATFase gene (ATF1) and the isoamyl acetate-hydrolyzing esterase gene (IAH1) and used these strains in small-scale sake brewing. Fermentation profiles as well as components of the resulting sake were largely alike; however, the amount of isoamyl acetate in the sake increased with an increasing ratio of AATFase/Iah1p esterase activity. Therefore, we conclude that the balance of these two enzyme activities is important for isoamyl acetate accumulation in sake mash.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4490 ◽  
Author(s):  
Antonio Morata ◽  
Carlos Escott ◽  
Iris Loira ◽  
Juan Manuel Del Fresno ◽  
Carmen González ◽  
...  

Yeast are able to modulate many sensory parameters of wines during red must fermentation. The effect on color and on the formation of derived pigments during fermentation has been studied thoroughly since the 90s. Yeast can increase grape anthocyanin’s color by acidification by hyperchromic effect (increase of flavylium molecules). Recent studies with non-Saccharomyces species, as Lachancea thermotolerans, described the intense effect of some strains on anthocyanin’s color, and subsequent, stability, by strongly reducing wine’s pH during fermentation. Moreover, selected yeast strains of Saccharomyces have been shown to release metabolites such as pyruvic acid or acetaldehyde that promote the formation of vitisin A and B pyranoanthocyanins during must fermentation. Schizosaccharomyces pombe, because of its specific metabolism, can produce higher concentrations of pyruvate, which enhances the formation of vitisin A-type derivatives. The hydroxycinnamate decarboxylase activity that some Saccharomyces strains express during fermentation also promotes the formation of vinylphenolic derivatives. Some non-Saccharomyces species, such as S. pombe or P. guilliermondii can also improve the production of these derivatives compared to selected strains of Saccharomyces cerevisiae. Lastly, some yeasts are also able to modulate the formations of polymeric pigments between grape anthocyanins and flavonoids, such as catechins and procyanidins.


Fermentation ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 70 ◽  
Author(s):  
Çelik ◽  
Erten ◽  
Cabaroglu

Vitis vinifera cv. Narince is a Turkish native white grape variety. In this study, volatile and sensory properties of Narince wines that are produced with autochthonous Saccharomyces cerevisiae (S. cerevisiae) strains and commercial strain were compared. Autochthonous yeast strains 1044 (MG017575), 1088 (MG017577), and 1281 (MG017581) were previously isolated from spontaneous fermentations of Narince grapes. Volatile compounds formed in wines were extracted using a liquid–liquid extraction method and determined by GC-MS-FID. All yeast strains fermented Narince grape juice to dryness. The differences between the volatile profiles of the yeast strains were determined. Wines fermented with autochthonous strains 1281 and 1044 produced a higher amount of acetates and ethyl esters. While the highest concentrations of ethyl hexanoate and hexyl acetate were found in wine fermented with 1044, the highest concentrations of ethyl octanoate, ethyl decanoate, isoamyl acetate, and 2-phenylethyl acetate were found in wine fermented with strain 1281. Also, the highest contents of 2-phenyl ethanol and linalool were found in wine fermented with strain 1281. According to sensory analysis, the wine fermented with 1281 achieved the best scores in floral and fruity attributes, as well as balance and global impression. The data obtained in the present study showed that autochthonous yeast strains affect the final physicochemical composition and sensory profile of Narince wines.


Sign in / Sign up

Export Citation Format

Share Document