scholarly journals Investigating Algal Communities in Lacustrine and Hydro-Terrestrial Environments of East Antarctica Using Deep Amplicon Sequencing

2020 ◽  
Vol 8 (4) ◽  
pp. 497 ◽  
Author(s):  
Yuu Hirose ◽  
Takuhei Shiozaki ◽  
Masahiro Otani ◽  
Sakae Kudoh ◽  
Satoshi Imura ◽  
...  

Antarctica has one of the most extreme environments on Earth, with low temperatures and low nutrient levels. Antarctica’s organisms live primarily in the coastal, ice-free areas which cover approximately 0.18% of the continent’s surface. Members of Cyanobacteria and eukaryotic algae are important primary producers in Antarctica since they can synthesize organic compounds from carbon dioxide and water using solar energy. However, community structures of photosynthetic algae in Antarctica have not yet been fully explored at molecular level. In this study, we collected diverse algal samples in lacustrine and hydro-terrestrial environments of Langhovde and Skarvsnes, which are two ice-free regions in East Antarctica. We performed deep amplicon sequencing of both 16S ribosomal ribonucleic acid (rRNA) and 18S rRNA genes, and we explored the distribution of sequence variants (SVs) of these genes at single nucleotide difference resolution. SVs of filamentous Cyanobacteria genera, including Leptolyngbya, Pseudanabaena, Phormidium, Nodosilinea, Geitlerinama, and Tychonema, were identified in most of the samples, whereas Phormidesmis SVs were distributed in fewer samples. We also detected unicellular, multicellular or heterocyst forming Cyanobacteria strains, but in relatively small abundance. For SVs of eukaryotic algae, Chlorophyta, Cryptophyta, and Ochrophyta were widely distributed among the collected samples. In addition, there was a red colored bloom of eukaryotic alga, Geminigera cryophile (Cryptophyta), in the Langhovde coastal area. Eukaryotic SVs of Acutuncus antarcticus and/or Diphascon pingue of Tardigrada were dominant among most of the samples. Our data revealed the detailed structures of the algal communities in Langhovde and Skarvsnes. This will contribute to our understanding of Antarctic ecosystems and support further research into this subject.

2020 ◽  
Vol 9 (23) ◽  
Author(s):  
Kazumori Mise ◽  
Shigeto Otsuka

ABSTRACT Compared with the well-studied soil prokaryotic communities, little is known about soil eukaryotic communities. Here, we investigated the eukaryotic community structures in 43 arable soils using amplicon sequencing of 18S rRNA genes. Major taxonomic groups, such as Fungi, Holozoa, and Stramenopiles, were detected in all samples.


2020 ◽  
Vol 11 ◽  
Author(s):  
Carla Greco ◽  
Dale T. Andersen ◽  
Ian Hawes ◽  
Alexander M. C. Bowles ◽  
Marian L. Yallop ◽  
...  

Antarctic perennially ice-covered lakes provide a stable low-disturbance environment where complex microbially mediated structures can grow. Lake Untersee, an ultra-oligotrophic lake in East Antarctica, has the lake floor covered in benthic microbial mat communities, where laminated organo-sedimentary structures form with three distinct, sympatric morphologies: small, elongated cuspate pinnacles, large complex cones and flat mats. We examined the diversity of prokaryotes and eukaryotes in pinnacles, cones and flat microbial mats using high-throughput sequencing of 16S and 18S rRNA genes and assessed how microbial composition may underpin the formation of these distinct macroscopic mat morphologies under the same environmental conditions. Our analysis identified distinct clustering of microbial communities according to mat morphology. The prokaryotic communities were dominated by Cyanobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes, and Actinobacteria. While filamentous Tychonema cyanobacteria were common in all mat types, Leptolyngbya showed an increased relative abundance in the pinnacle structures only. Our study provides the first report of the eukaryotic community structure of Lake Untersee benthic mats, which was dominated by Ciliophora, Chlorophyta, Fungi, Cercozoa, and Discicristata. The eukaryote richness was lower than for prokaryote assemblages and no distinct clustering was observed between mat morphologies. These findings suggest that cyanobacterial assemblages and potentially other bacteria and eukaryotes may influence structure morphogenesis, allowing distinct structures to form across a small spatial scale.


2005 ◽  
Vol 71 (11) ◽  
pp. 7164-7171 ◽  
Author(s):  
M. J. Ferris ◽  
K. B. Sheehan ◽  
M. Kühl ◽  
K. Cooksey ◽  
B. Wigglesworth-Cooksey ◽  
...  

ABSTRACT Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C.


2017 ◽  
Author(s):  
Mia M. Bengtsson ◽  
Anton Bühler ◽  
Anne Brauer ◽  
Sven Dahlke ◽  
Hendrik Schubert ◽  
...  

ABSTRACTEelgrass (Zostera marina) is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes) as well as eukaryotic epibionts in-and outside lagoons on the German Baltic Sea coast. Bacterial microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both bacterial and eukaryotic community composition. Communities of bacterial and eukaryotic epibionts were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surface biofilms are a mosaic of the microbiomes of several eukaryotes, in addition to that of the eelgrass itself, and underlines that eukaryotic microbial diversity should be taken into account in order to explain microbiome assembly and dynamics in aquatic environments.


2021 ◽  
Vol 95 ◽  
Author(s):  
B. Neov ◽  
G.P. Vasileva ◽  
G. Radoslavov ◽  
P. Hristov ◽  
D.T.J. Littlewood ◽  
...  

Abstract The aim of the study is to test a hypothesis for the phylogenetic relationships among mammalian hymenolepidid tapeworms, based on partial (D1–D3) nuclear 28S ribosomal RNA (rRNA) genes, by estimating new molecular phylogenies for the group based on partial mitochondrial cytochrome c oxidase I (COI) and nuclear 18S rRNA genes, as well as a combined analysis using all three genes. New sequences of COI and 18S rRNA genes were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analyses confirmed the major clades identified by Haukisalmi et al. (Zoologica Scripta 39: 631–641, 2010): Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade. While the Ditestolepis clade is associated with soricids, the structure of the other three clades suggests multiple evolutionary events of host switching between shrews and rodents. Two of the present analyses (18S rRNA and COI genes) show that the basal relationships of the four mammalian clades are branching at the same polytomy with several hymenolepidids from birds (both terrestrial and aquatic). This may indicate a rapid radiation of the group, with multiple events of colonizations of mammalian hosts by avian parasites.


Nature Plants ◽  
2021 ◽  
Author(s):  
Ka-Wai Ma ◽  
Yulong Niu ◽  
Yong Jia ◽  
Jana Ordon ◽  
Charles Copeland ◽  
...  

AbstractPlants grown in natural soil are colonized by phylogenetically structured communities of microbes known as the microbiota. Individual microbes can activate microbe-associated molecular pattern (MAMP)-triggered immunity (MTI), which limits pathogen proliferation but curtails plant growth, a phenomenon known as the growth–defence trade-off. Here, we report that, in monoassociations, 41% (62 out of 151) of taxonomically diverse root bacterial commensals suppress Arabidopsis thaliana root growth inhibition (RGI) triggered by immune-stimulating MAMPs or damage-associated molecular patterns. Amplicon sequencing of bacterial 16S rRNA genes reveals that immune activation alters the profile of synthetic communities (SynComs) comprising RGI-non-suppressive strains, whereas the presence of RGI-suppressive strains attenuates this effect. Root colonization by SynComs with different complexities and RGI-suppressive activities alters the expression of 174 core host genes, with functions related to root development and nutrient transport. Furthermore, RGI-suppressive SynComs specifically downregulate a subset of immune-related genes. Precolonization of plants with RGI-suppressive SynComs, or mutation of one commensal-downregulated transcription factor, MYB15, renders the plants more susceptible to opportunistic Pseudomonas pathogens. Our results suggest that RGI-non-suppressive and RGI-suppressive root commensals modulate host susceptibility to pathogens by either eliciting or dampening MTI responses, respectively. This interplay buffers the plant immune system against pathogen perturbation and defence-associated growth inhibition, ultimately leading to commensal–host homeostasis.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Benjamin J. Callahan ◽  
Dmitry Grinevich ◽  
Siddhartha Thakur ◽  
Michael A. Balamotis ◽  
Tuval Ben Yehezkel

Abstract Background Out of the many pathogenic bacterial species that are known, only a fraction are readily identifiable directly from a complex microbial community using standard next generation DNA sequencing. Long-read sequencing offers the potential to identify a wider range of species and to differentiate between strains within a species, but attaining sufficient accuracy in complex metagenomes remains a challenge. Methods Here, we describe and analytically validate LoopSeq, a commercially available synthetic long-read (SLR) sequencing technology that generates highly accurate long reads from standard short reads. Results LoopSeq reads are sufficiently long and accurate to identify microbial genes and species directly from complex samples. LoopSeq perfectly recovered the full diversity of 16S rRNA genes from known strains in a synthetic microbial community. Full-length LoopSeq reads had a per-base error rate of 0.005%, which exceeds the accuracy reported for other long-read sequencing technologies. 18S-ITS and genomic sequencing of fungal and bacterial isolates confirmed that LoopSeq sequencing maintains that accuracy for reads up to 6 kb in length. LoopSeq full-length 16S rRNA reads could accurately classify organisms down to the species level in rinsate from retail meat samples, and could differentiate strains within species identified by the CDC as potential foodborne pathogens. Conclusions The order-of-magnitude improvement in length and accuracy over standard Illumina amplicon sequencing achieved with LoopSeq enables accurate species-level and strain identification from complex- to low-biomass microbiome samples. The ability to generate accurate and long microbiome sequencing reads using standard short read sequencers will accelerate the building of quality microbial sequence databases and removes a significant hurdle on the path to precision microbial genomics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin M. Singleton ◽  
Francesca Petriglieri ◽  
Jannie M. Kristensen ◽  
Rasmus H. Kirkegaard ◽  
Thomas Y. Michaelsen ◽  
...  

AbstractMicroorganisms play crucial roles in water recycling, pollution removal and resource recovery in the wastewater industry. The structure of these microbial communities is increasingly understood based on 16S rRNA amplicon sequencing data. However, such data cannot be linked to functional potential in the absence of high-quality metagenome-assembled genomes (MAGs) for nearly all species. Here, we use long-read and short-read sequencing to recover 1083 high-quality MAGs, including 57 closed circular genomes, from 23 Danish full-scale wastewater treatment plants. The MAGs account for ~30% of the community based on relative abundance, and meet the stringent MIMAG high-quality draft requirements including full-length rRNA genes. We use the information provided by these MAGs in combination with >13 years of 16S rRNA amplicon sequencing data, as well as Raman microspectroscopy and fluorescence in situ hybridisation, to uncover abundant undescribed lineages belonging to important functional groups.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


Sign in / Sign up

Export Citation Format

Share Document