cyanidioschyzon merolae
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 40)

H-INDEX

32
(FIVE YEARS 3)

IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dongqing Pan ◽  
Ryo Oyama ◽  
Tomomi Sato ◽  
Takanori Nakane ◽  
Ryo Mizunuma ◽  
...  

CmABCB1 is a Cyanidioschyzon merolae homolog of human ABCB1, a well known ATP-binding cassette (ABC) transporter responsible for multi-drug resistance in various cancers. Three-dimensional structures of ABCB1 homologs have revealed the snapshots of inward- and outward-facing states of the transporters in action. However, sufficient information to establish the sequential movements of the open–close cycles of the alternating-access model is still lacking. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has proven its worth in determining novel structures and recording sequential conformational changes of proteins at room temperature, especially for medically important membrane proteins, but it has never been applied to ABC transporters. In this study, 7.7 monoacylglycerol with cholesterol as the host lipid was used and obtained well diffracting microcrystals of the 130 kDa CmABCB1 dimer. Successful SFX experiments were performed by adjusting the viscosity of the crystal suspension of the sponge phase with hydroxypropyl methylcellulose and using the high-viscosity sample injector for data collection at the SACLA beamline. An outward-facing structure of CmABCB1 at a maximum resolution of 2.22 Å is reported, determined by SFX experiments with crystals formed in the lipidic cubic phase (LCP-SFX), which has never been applied to ABC transporters. In the type I crystal, CmABCB1 dimers interact with adjacent molecules via not only the nucleotide-binding domains but also the transmembrane domains (TMDs); such an interaction was not observed in the previous type II crystal. Although most parts of the structure are similar to those in the previous type II structure, the substrate-exit region of the TMD adopts a different configuration in the type I structure. This difference between the two types of structures reflects the flexibility of the substrate-exit region of CmABCB1, which might be essential for the smooth release of various substrates from the transporter.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takayuki Fujiwara ◽  
Shunsuke Hirooka ◽  
Shin-ya Miyagishima

Abstract Background The unicellular red alga Cyanidioschyzon merolae exhibits a very simple cellular and genomic architecture. In addition, procedures for genetic modifications, such as gene targeting by homologous recombination and inducible/repressible gene expression, have been developed. However, only two markers for selecting transformants, uracil synthase (URA) and chloramphenicol acetyltransferase (CAT), are available in this alga. Therefore, manipulation of two or more different chromosomal loci in the same strain in C. merolae is limited. Results This study developed a nuclear targeting and transformant selection system using an antibiotics blasticidin S (BS) and the BS deaminase (BSD) selectable marker by homologous recombination in C. merolae. In addition, this study has succeeded in simultaneously modifying two different chromosomal loci by a single-step cotransformation based on the combination of BSD and CAT selectable markers. A C. merolae strain that expresses mitochondrion-targeted mSCARLET (with the BSD marker) and mVENUS (with the CAT marker) from different chromosomal loci was generated with this procedure. Conclusions The newly developed BSD selectable marker enables an additional genetic modification to the already generated C. merolae transformants based on the URA or CAT system. Furthermore, the cotransformation system facilitates multiple genetic modifications. These methods and the simple nature of the C. merolae cellular and genomic architecture will facilitate studies on several phenomena common to photosynthetic eukaryotes.


2021 ◽  
Author(s):  
Naoto Tanaka ◽  
Yuko Mogi ◽  
Takayuki Fujiwara ◽  
Kannosuke Yabe ◽  
Yukiho Toyama ◽  
...  

The unicellular alga Cyanidioschyzon merolae has a simple cellular structure: each cell has one nucleus, one mitochondrion, one chloroplast, and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner.


2021 ◽  
Vol 22 (16) ◽  
pp. 8396
Author(s):  
Miriam Izzo ◽  
Margot Jacquet ◽  
Takayuki Fujiwara ◽  
Ersan Harputlu ◽  
Radosław Mazur ◽  
...  

Here, we report the development of a novel photoactive biomolecular nanoarchitecture based on the genetically engineered extremophilic photosystem I (PSI) biophotocatalyst interfaced with a single layer graphene via pyrene-nitrilotriacetic acid self-assembled monolayer (SAM). For the oriented and stable immobilization of the PSI biophotocatalyst, an His6-tag was genetically engineered at the N-terminus of the stromal PsaD subunit of PSI, allowing for the preferential binding of this photoactive complex with its reducing side towards the graphene monolayer. This approach yielded a novel robust and ordered nanoarchitecture designed to generate an efficient direct electron transfer pathway between graphene, the metal redox center in the organic SAM and the photo-oxidized PSI biocatalyst. The nanosystem yielded an overall current output of 16.5 µA·cm−2 for the nickel- and 17.3 µA·cm−2 for the cobalt-based nanoassemblies, and was stable for at least 1 h of continuous standard illumination. The novel green nanosystem described in this work carries the high potential for future applications due to its robustness, highly ordered and simple architecture characterized by the high biophotocatalyst loading as well as simplicity of manufacturing.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1218
Author(s):  
Imran Pancha ◽  
Kazuhiro Takaya ◽  
Kan Tanaka ◽  
Sousuke Imamura

Microalgae are considered one of the best resources for the production of biofuels and industrially important compounds. Various models have been developed to understand the fundamental mechanism underlying the accumulation of triacylglycerols (TAGs)/starch and to enhance its content in cells. Among various algae, the red alga Cyanidioschyzonmerolae has been considered an excellent model system to understand the fundamental mechanisms behind the accumulation of TAG/starch in the microalga, as it has a smaller genome size and various biotechnological methods are available for it. Furthermore, C. merolae can grow and survive under high temperature (40 °C) and low pH (2–3) conditions, where most other organisms would die, thus making it a choice alga for large-scale production. Investigations using this alga has revealed that the target of rapamycin (TOR) kinase is involved in the accumulation of carbon-reserved molecules, TAGs, and starch. Furthermore, detailed molecular mechanisms of the role of TOR in controlling the accumulation of TAGs and starch were uncovered via omics analyses. Based on these findings, genetic engineering of the key gene and proteins resulted in a drastic increment of the amount of TAGs and starch. In addition to these studies, other trials that attempted to achieve the TAG increment in C. merolae have been summarized in this article.


2021 ◽  
Author(s):  
Yamato Yoshida ◽  
Naoto Tanaka ◽  
Yuko Mogi ◽  
Takayuki Fujiwara ◽  
Kannosuke Yabe ◽  
...  

The simple cellular structure of the unicellular alga Cyanidioschyzon merolae consists of one nucleus, one mitochondrion, one chloroplast, and one peroxisome per cell and offers unique advantages to investigate mechanisms of organellar proliferation and the cell cycle. Here, we describe an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system, CZON-cutter, for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease to target editing at a locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants by fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows validation of phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 971
Author(s):  
Sota Takahashi ◽  
Riho Okubo ◽  
Yu Kanesaki ◽  
Baifeng Zhou ◽  
Kazuhiro Takaya ◽  
...  

Microalgal triacylglycerols (TAGs) are a good feedstock for liquid biofuel production. Improving the expression and/or function of transcription factors (TFs) involved in TAG accumulation may increase TAG content; however, information on microalgae is still lacking. In this study, 14 TFs in the unicellular red alga Cyanidioschyzon merolae were identified as candidate TFs regulating TAG accumulation using available transcriptome and phosphoproteome data under conditions driving TAG accumulation. To investigate the roles of these TFs, we constructed TF-overexpression strains and analyzed lipid droplet (LD) formation and TAG contents in the cells grown under standard conditions. Based on the results, we identified four TFs involved in LD and TAG accumulation. RNA-Seq analyses were performed to identify genes regulated by the four TFs using each overexpression strain. Among the TAG biosynthesis-related genes, only the gene encoding the endoplasmic reticulum-localized lysophosphatidic acid acyltransferase 1 (LPAT1) was notably increased among the overexpression strains. In the LPAT1 overexpression strain, TAG accumulation was significantly increased compared with the control strain under normal growth conditions. These results indicate that the four TFs positively regulate TAG accumulation by changing their target gene expression in C. merolae.


CYTOLOGIA ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 89-96
Author(s):  
Tsuneyoshi Kuroiwa ◽  
Fumi Yagisawa ◽  
Takayuki Fujiwara ◽  
Osami Misumi ◽  
Noriko Nagata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document