scholarly journals Innate Lymphoid Cells: Important Regulators of Host–Bacteria Interaction for Border Defense

2020 ◽  
Vol 8 (9) ◽  
pp. 1342 ◽  
Author(s):  
Katharina Beck ◽  
Hiroshi Ohno ◽  
Naoko Satoh-Takayama

Innate lymphoid cells (ILCs) are a recently discovered type of innate immune lymphocyte. They include three different groups classified by the nature of the transcription factors required for their development and by the cytokines they produce. ILCs mainly reside in tissues close to the mucosal barrier such as the respiratory and gastrointestinal tracts. Due to their close proximity to the mucosal surface, ILCs are exposed to a variety of both commensal and pathogenic bacteria. Under non-pathological conditions, ILCs have been shown to be important regulators for the maintenance of tissue homeostasis by mutual interactions with the microbiome. Besides these important functions at homeostasis, several studies have also provided emerging evidence that ILCs contribute to defense against pathogenic bacterial infection by responding rapidly to the pathogens as well as orchestrating other immune cells. In this review, we summarize recent advances in our understanding of the interactions of ILCs and bacteria, with special focus on the function of the different ILC subsets in bacterial infections.

2014 ◽  
Vol 211 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Nicolas Serafini ◽  
Roel G.J. Klein Wolterink ◽  
Naoko Satoh-Takayama ◽  
Wei Xu ◽  
Christian A.J. Vosshenrich ◽  
...  

Group 3 innate lymphoid cells (ILC3) include IL-22–producing NKp46+ cells and IL-17A/IL-22–producing CD4+ lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and ILC2 development from hematopoietic stem cells (HSCs) and for IL-5 and IL-13 production by T cells and ILC2, the role for Gata3 in the generation or function of other ILC subsets is not known. We found that abundant GATA-3 protein is expressed in mucosa-associated ILC3 subsets with levels intermediate between mature B cells and ILC2. Chimeric mice generated with Gata3-deficient fetal liver hematopoietic precursors lack all intestinal RORγt+ ILC3 subsets, and these mice show defective production of IL-22 early after infection with the intestinal pathogen Citrobacter rodentium, leading to impaired survival. Further analyses demonstrated that ILC3 development requires cell-intrinsic Gata3 expression in fetal liver hematopoietic precursors. Our results demonstrate that Gata3 plays a generalized role in ILC lineage determination and is critical for the development of gut RORγt+ ILC3 subsets that maintain mucosal barrier homeostasis. These results further extend the paradigm of Gata3-dependent regulation of diversified innate ILC and adaptive T cell subsets.


2015 ◽  
Vol 17 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Kazuyo Moro ◽  
Hiroki Kabata ◽  
Masanobu Tanabe ◽  
Satoshi Koga ◽  
Natsuki Takeno ◽  
...  

2021 ◽  
Vol 6 (57) ◽  
pp. eabd0359
Author(s):  
Luke B. Roberts ◽  
Corinna Schnoeller ◽  
Rita Berkachy ◽  
Matthew Darby ◽  
Jamie Pillaye ◽  
...  

Innate lymphoid cells (ILCs) are critical mediators of immunological and physiological responses at mucosal barrier sites. Whereas neurotransmitters can stimulate ILCs, the synthesis of small-molecule neurotransmitters by these cells has only recently been appreciated. Group 2 ILCs (ILC2s) are shown here to synthesize and release acetylcholine (ACh) during parasitic nematode infection. The cholinergic phenotype of pulmonary ILC2s was associated with their activation state, could be induced by in vivo exposure to extracts of Alternaria alternata or the alarmin cytokines interleukin-33 (IL-33) and IL-25, and was augmented by IL-2 in vitro. Genetic disruption of ACh synthesis by murine ILC2s resulted in increased parasite burdens, lower numbers of ILC2s, and reduced lung and gut barrier responses to Nippostrongylus brasiliensis infection. These data demonstrate a functional role for ILC2-derived ACh in the expansion of ILC2s for maximal induction of type 2 immunity.


Author(s):  
Richa Mishra ◽  
Pandikannan Krishnamoorthy ◽  
Himanshu Kumar

Host innate immunity is the major player against continuous microbial infection. Various pathogenic bacteria adopt the strategies to evade the immunity and show resistance toward the various established therapies. Despite the advent of many antibiotics for bacterial infections, there is a substantial need for the host-directed therapies (HDTs) to combat the infection. HDTs are recently being adopted to be useful in eradicating intracellular bacterial infection. Changing the innate immune responses of the host cells alters pathogen’s ability to reside inside the cell. MicroRNAs are the small non-coding endogenous molecules and post-transcriptional regulators to target the 3’UTR of the messenger RNA. They are reported to modulate the host’s immune responses during bacterial infections. Exploiting microRNAs as a therapeutic candidate in HDTs upon bacterial infection is still in its infancy. Here, initially, we re-analyzed the publicly available transcriptomic dataset of macrophages, infected with different pathogenic bacteria and identified significant genes and microRNAs common to the differential infections. We thus identified and miR-30e-5p, to be upregulated in different bacterial infections which enhances innate immunity to combat bacterial replication by targeting key negative regulators such as SOCS1 and SOCS3 of innate immune signaling pathways. Therefore, we propose miR-30e-5p as one of the potential candidates to be considered for additional clinical validation toward HDTs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changyi Li ◽  
Jianyue Liu ◽  
Jie Pan ◽  
Yuhui Wang ◽  
Lei Shen ◽  
...  

Innate lymphoid cells (ILCs) are emerging as important players in inflammatory diseases. The oral mucosal barrier harbors all ILC subsets, but how these cells regulate the immune responses in periodontal ligament tissue during periodontitis remains undefined. Here, we show that total ILCs are markedly increased in periodontal ligament of periodontitis patients compared with healthy controls. Among them, ILC1s and ILC3s, particularly NKp44+ILC3 subset, are the predominant subsets accumulated in the periodontal ligament. Remarkably, ILC1s and ILC3s from periodontitis patients produce more IL-17A and IFN-γ than that from healthy controls. Collectively, our results highlight the role of ILCs in regulating oral immunity and periodontal ligament inflammation and provide insights into targeting ILCs for the treatment of periodontitis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengzheng Shi ◽  
Hiroshi Ohno ◽  
Naoko Satoh-Takayama

Innate lymphoid cells (ILCs) are a group of innate immune cells that possess overlapping features with T cells, although they lack antigen-specific receptors. ILCs consist of five subsets-ILC1, ILC2, ILC3, lymphoid tissue inducer (LTi-like) cells, and natural killer (NK) cells. They have significant functions in mediating various immune responses, protecting mucosal barrier integrity and maintaining tissue homeostasis in the lung, skin, intestines, and liver. ILCs react immediately to signals from internal and external sources. Emerging evidence has revealed that dietary micronutrients, such as various vitamins and minerals can significantly modulate immune responses through ILCs and subsequently affect human health. It has been demonstrated that micronutrients control the development and proliferation of different types of ILCs. They are also potent immunoregulators in several autoimmune diseases and play vital roles in resolving local inflammation. Here, we summarize the interplay between several essential micronutrients and ILCs to maintain epithelial barrier functions in various mucosal tissues and discuss their limitations and potentials for promoting human health.


Author(s):  
Jifeng Yu

Regulatory innate lymphoid cells (ILCregs) are a newly identified subset of innate immune lymphocytes. The discovery of this subset cell has revealed several inhibitory and stimulatory pathways that affect the regulatory functions of ILCregs, in addition to miRNA and other genetic molecular regulations. These pathways may play important roles in the pathogenesis and potential immunotherapy in patients with different kind of diseases, such as inflammation and ischemia / reperfusion injury of the kidney, acute myeloid leukemia, through immunomodulatory and anti-inflammatory pathway, as well as miRNA regulations. Further studies on ILCregs may be a potentially high interest in the near future.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ana Valle-Noguera ◽  
María José Gómez-Sánchez ◽  
Mathilde J. H. Girard-Madoux ◽  
Aranzazu Cruz-Adalia

Since their discovery, innate lymphoid cells (ILCs) have gradually been gaining greater relevance in the field of immunology due to their multiple functions in the innate immune response. They can mainly be found in mucosal and barrier organs like skin, gut, and lungs, and have been classified into five main types (NKs, ILC1s, ILC2s, ILC3s, and Lti cells) according to their function and development. They all play major roles in functions such as tissue homeostasis, early pathogen defense, regulation of inflammation, or tissue remodeling. ILCs are mostly tissue-resident cells tightly bound to the tissue structure, a fact that requires long and complex protocols that do not always provide sufficient yield for analysis. This suggests the need for optimized approaches aimed at ensuring that enriched and viable ILC samples are obtained, in order to furnish quality results. Herein a detailed protocol is established for obtaining a single-cell suspension highly enriched in lymphoid cells from mouse gut in order to identify the different subsets of ILCs by means of flow cytometry. The cell marker panel and flow cytometry gating strategies for identification and quantification of all the different ILC populations are provided for simultaneous analysis. Moreover, the protocol described includes a procedure for studying the different cytokines produced by ILC3s involved in maintaining the integrity of the gut barrier and defending against extracellular pathogens. As a result, herein an efficient method is presented for studying mouse ILCs within the lamina propria of the small intestine and colon; this can constitute a useful tool for future investigations in the field.


2019 ◽  
Vol 10 ◽  
Author(s):  
Francesca Romana Mariotti ◽  
Linda Quatrini ◽  
Enrico Munari ◽  
Paola Vacca ◽  
Lorenzo Moretta

Sign in / Sign up

Export Citation Format

Share Document