scholarly journals The Role of Toll-Like Receptors in Retroviral Infection

2020 ◽  
Vol 8 (11) ◽  
pp. 1787
Author(s):  
Edward P. Browne

Toll-like receptors (TLRs) are key pathogen sensing receptors that respond to diverse microbial ligands, and trigger both innate and adaptive immune responses to infection. Since their discovery, a growing body of evidence has pointed to an important role for TLRs in retroviral infection and pathogenesis. These data suggest that multiple TLRs contribute to the anti-retroviral response, and that TLR engagement by retroviruses can have complex and divergent outcomes for infection. Despite this progress, numerous questions remain about the role of TLRs in retroviral infection. In this review, I summarize existing evidence for TLR-retrovirus interactions and the functional roles these receptors play in immunity and pathogenesis, with particular focus on human immunodeficiency virus (HIV).

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1003
Author(s):  
Kasper Favere ◽  
Matthias Bosman ◽  
Karin Klingel ◽  
Stephane Heymans ◽  
Sophie Van Linthout ◽  
...  

Myocarditis is an inflammatory disease of the heart with viral infections being the most common aetiology. Its complex biology remains poorly understood and its clinical management is one of the most challenging in the field of cardiology. Toll-like receptors (TLRs), a family of evolutionarily conserved pattern recognition receptors, are increasingly known to be implicated in the pathophysiology of viral myocarditis. Their central role in innate and adaptive immune responses, and in the inflammatory reaction that ensues, indeed makes them prime candidates to profoundly affect every stage of the disease process. This review describes the pathogenesis and pathophysiology of viral myocarditis and scrutinises the role of TLRs in every phase. We conclude with directions for future research in this field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haixia Li ◽  
Shan Liu ◽  
Jinming Han ◽  
Shengxian Li ◽  
Xiaoyan Gao ◽  
...  

Toll-like receptors (TLRs) are a class of proteins playing a key role in innate and adaptive immune responses. TLRs are involved in the development and progression of neuroimmune diseases via initiating inflammatory responses. Thus, targeting TLRs signaling pathway may be considered as a potential therapy for neuroimmune diseases. However, the role of TLRs is elusive and complex in neuroimmune diseases. In addition to the inadequate immune response of TLRs inhibitors in the experiments, the recent studies also demonstrated that partial activation of TLRs is conducive to the production of anti-inflammatory factors and nervous system repair. Exploring the mechanism of TLRs in neuroimmune diseases and combining with developing the emerging drug may conquer neuroimmune diseases in the future. Herein, we provide an overview of the role of TLRs in several neuroimmune diseases, including multiple sclerosis, neuromyelitis optica spectrum disorder, Guillain-Barré syndrome and myasthenia gravis. Emerging difficulties and potential solutions in clinical application of TLRs inhibitors will also be discussed.


Immunity ◽  
2010 ◽  
Vol 32 (5) ◽  
pp. 654-669 ◽  
Author(s):  
Fabien P. Blanchet ◽  
Arnaud Moris ◽  
Damjan S. Nikolic ◽  
Martin Lehmann ◽  
Sylvain Cardinaud ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Killen García ◽  
Gisselle Escobar ◽  
Pablo Mendoza ◽  
Caroll Beltran ◽  
Claudio Perez ◽  
...  

Neisseria gonorrhoeae(Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1βsecretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1βin Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1βlevels about ten times compared with unexposed Ngo-infected MDM (P<0.01). However, we did not observe any changes in inflammasome transcriptional activation of speck-like protein containing a caspase recruitment domain (CARD) (ASC,P>0.05) and caspase-1 (CASP1,P>0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P>0.01). Notably ATP treatment defined an increase of positive staining for IL-1βwith a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1βsecretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.


2003 ◽  
Vol 9 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Naoko Aoki ◽  
Shoji Kimura ◽  
Zhou Xing

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Carol L. Vinton ◽  
Samuel J. Magaziner ◽  
Kimberly A. Dowd ◽  
Shelly J. Robertson ◽  
Emerito Amaro-Carambot ◽  
...  

ABSTRACT Flaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates. We measured ZIKV replication, cellular ZIKV RNA levels, and immune responses in non-SIV-infected and SIV-infected rhesus macaques (RMs), which we infected with ZIKV. Coinfected animals had a 1- to 2-day delay in peak ZIKV viremia, which was 30% of that in non-SIV-infected animals. However, ZIKV viremia was significantly prolonged in SIV-positive (SIV+) RMs. ISG levels at the time of ZIKV infection were predictive for lower ZIKV viremia in the SIV+ RMs, while prolonged ZIKV viremia was associated with muted and delayed adaptive responses in SIV+ RMs. IMPORTANCE Immunocompromised individuals often become symptomatic with infections which are normally fairly asymptomatic in healthy individuals. The particular mechanisms that underlie susceptibility to coinfections in human immunodeficiency virus (HIV)-infected individuals are multifaceted. ZIKV and other flaviviruses are sensitive to neutralizing antibodies, whose production can be limited in HIV-infected individuals but are also sensitive to type I interferons, which are expressed at high levels in HIV-infected individuals. Data in this study highlight how individual components of the innate and adaptive immune responses which become perturbed in HIV-infected individuals influence ZIKV infection.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


Sign in / Sign up

Export Citation Format

Share Document