scholarly journals Fluorescence Detection of Type III Secretion Using a Glu-CyFur Reporter System in Citrobacter rodentium

2020 ◽  
Vol 8 (12) ◽  
pp. 1953
Author(s):  
Heather A. Pendergrass ◽  
Adam L. Johnson ◽  
Julia A. Hotinger ◽  
Aaron E. May

Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea worldwide. EPEC and the closely related murine model of EPEC infection, Citrobacter rodentium, utilize a type III secretion system (T3SS) to propagate the infection. Since the T3SS is not essential for the bacteria to survive or propagate, inhibiting the virulence factor with a therapeutic would treat the infection without causing harm to commensal bacteria. Studying inhibitors of the T3SS usually requires a BSL-2 laboratory designation and eukaryotic host cells while not indicating the mechanism of inhibition. We have designed a BSL-1 assay using the murine model C. rodentium that does not require mammalian cell culture. This CPG2-reporter assay allows for more rapid analysis of secretion efficiency than Western blotting and is sensitive enough to differentiate between partial and total inhibition of the T3SS. Here we present our method and the results of a small collection of compounds we have screened, including known T3SS inhibitors EGCG, regacin, and aurodox and related quorum sensing inhibitors tannic acid and ellagic acid. We have further characterized EGCG as a T3SS inhibitor and established its IC50 of 1.8 ± 0.4 μM. We also establish tannic acid as a potent inhibitor of the T3SS with an IC50 of 0.65 ± 0.09 μM.

2006 ◽  
Vol 188 (7) ◽  
pp. 2411-2420 ◽  
Author(s):  
Wendy Higashide ◽  
Daoguo Zhou

ABSTRACT Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.


2021 ◽  
Vol 12 ◽  
Author(s):  
Boško Mitrović ◽  
Shir Lezerovich ◽  
Neta Sal-Man

Diarrheal diseases remain a major public health concern worldwide. Many of the causative bacterial pathogens that cause these diseases have a specialized protein complex, the type III secretion system (T3SS), which delivers effector proteins directly into host cells. These effectors manipulate host cell processes for the benefit of the infecting bacteria. The T3SS structure resembles a syringe anchored within the bacterial membrane, projecting toward the host cell membrane. The entry port of the T3SS substrates, called the export apparatus, is formed by five integral membrane proteins. Among the export apparatus proteins, EscV is the largest, and as it forms a nonamer, it constitutes the largest portion of the export apparatus complex. While there are considerable data on the soluble cytoplasmic domain of EscV, our knowledge of its membrane-associated section and its transmembrane domains (TMDs) is still very limited. In this study, using an isolated genetic reporter system, we found that TMD5 and TMD6 of EscV mediate strong self-oligomerization. Substituting these TMDs within the full-length protein with a random hydrophobic sequence resulted in a complete loss of function of the T3SS, further suggesting that the EscV TMD5 and TMD6 sequences have a functional role in addition to their structural role as membrane anchors. As we observed only mild reduction in the ability of the TMD-exchanged variants to integrate into the full or intermediate T3SS complexes, we concluded that EscV TMD5 and TMD6 are not crucial for the global assembly or stability of the T3SS complex but are rather involved in promoting the necessary TMD–TMD interactions within the complex and the overall TMD orientation to allow channel opening for the entry of T3SS substrates.


2006 ◽  
Vol 74 (4) ◽  
pp. 2328-2337 ◽  
Author(s):  
Michelle Kelly ◽  
Emily Hart ◽  
Rosanna Mundy ◽  
Olivier Marchès ◽  
Siouxsie Wiles ◽  
...  

ABSTRACT Attaching and effacing (A/E) pathogens are a significant cause of gastrointestinal illness in humans and animals. All A/E pathogens carry a large pathogenicity island, termed the locus for enterocyte effacement (LEE), which encodes a type III secretion system that translocates several effector proteins into host cells. To identify novel virulence determinants in A/E pathogens, we performed a signature-tagged mutagenesis screen in C57BL/6 mice by using the mouse A/E pathogen Citrobacter rodentium. Five hundred seventy-six derivatives of C. rodentium were tested in pools of 12 mutants. One attenuated mutant carried a transposon insertion in nleB, which encodes a putative effector of the LEE-encoded type III secretion system (T3SS). nleB is present in a genomic pathogenicity island that also encodes another putative effector, NleE, immediately downstream. Using translational fusions with β-lactamase (TEM-1), we showed that both NleB and NleE were translocated into host cells by the LEE-encoded T3SS of enteropathogenic Escherichia coli. In addition, deletion of the gene encoding NleB in C. rodentium resulted in reduced colonization of mice in single infections and reduced colonic hyperplasia. In contrast, the deletion of other non-LEE-encoded effector genes in C. rodentium, nleC, nleD, or nleE, had no effect on host colonization or disease. These results suggest that nleB encodes an important virulence determinant of A/E pathogens.


2003 ◽  
Vol 71 (3) ◽  
pp. 1405-1415 ◽  
Author(s):  
Mladen Tomich ◽  
Adam Griffith ◽  
Christine A. Herfst ◽  
Jane L. Burns ◽  
Christian D. Mohr

ABSTRACT Type III secretion systems are utilized by a number of gram-negative bacterial pathogens to deliver virulence-associated proteins into host cells. Using a PCR-based approach, we identified homologs of type III secretion genes in the gram-negative bacterium Burkholderia cepacia, an important pulmonary pathogen in immunocompromised patients and patients with cystic fibrosis. One of the genes, designated bscN, encodes a member of a family of ATP-binding proteins believed to generate energy driving virulence protein secretion. Genetic dissection of the regions flanking the bscN gene revealed a locus consisting of at least 10 open reading frames, predicted to encode products with significant homology to known type III secretion proteins in other bacteria. A defined null mutation was generated in the bscN gene, and the null strain and wild-type parent strain were examined by use of a murine model of B. cepacia infection. Quantitative bacteriological analysis of the lungs and spleens of infected C57BL/6 mice revealed that the bscN null strain was attenuated in virulence compared to the parent strain, with significantly lower bacterial recovery from the lungs and spleens at 3 days postinfection. Moreover, histopathological changes, including an inflammatory cell infiltrate, were more pronounced in the lungs of mice infected with the wild-type parent strain than in those of mice infected with the isogenic bscN mutant. These results implicate type III secretion as an important determinant in the pathogenesis of B. cepacia.


2012 ◽  
Vol 58 (8) ◽  
pp. 1002-1007 ◽  
Author(s):  
Takaaki Shimohata ◽  
Kazuaki Mawatari ◽  
Hitomi Iba ◽  
Masakazu Hamano ◽  
Sachie Negoro ◽  
...  

Vibrio parahaemolyticus is a pathogenic Vibrio species that causes food-borne acute gastroenteritis, often related to the consumption of raw or undercooked seafood. Vibrio parahaemolyticus has 2 type III secretion systems (T3SS1 and T3SS2). Here, we demonstrate that VP1657 (VopB1) and VP1656 (VopD1), which share sequence similarity with Pseudomonas genes popB (38%) and popD (36%), respectively, are essential for translocation of T3SS1 effectors into host cells. A VP1680CyaA fusion reporter system was constructed to observe effector translocation. Using this reporter assay we showed that the VopB1 and VopD1 deletion strains were unable to translocate VP1680 to host cell but that the secretion of VP1680 into the culture medium was not affected. VopB1 or VopD1 deletion strains did not enhance cytotoxicity and failed to activate mitogen-activated protein kinases and secretion of interleukin-8, which depend on VP1680. Thus, we conclude that VopB1 and VopD1 are essential components of the translocon. To target VopB1 and VopD1 may have therapeutic potential for the treatment or prevention in V. parahaemolyticus infection.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Chunfu Yang ◽  
Tregei Starr ◽  
Lihua Song ◽  
John H. Carlson ◽  
Gail L. Sturdevant ◽  
...  

ABSTRACTChlamydia trachomatisis an obligate intracellular bacterium that is a globally important human pathogen. The chlamydial plasmid is an attenuating virulence factor, but the molecular basis for attenuation is not understood. Chlamydiae replicate within a membrane-bound vacuole termed an inclusion, where they undergo a biphasic developmental growth cycle and differentiate from noninfectious into infectious organisms. Late in the developmental cycle, the fragile chlamydia-laden inclusion retains its integrity by surrounding itself with scaffolds of host cytoskeletal proteins. The ability of chlamydiae to developmentally free themselves from this cytoskeleton network is a fundamental virulence trait of the pathogen. Here, we show that plasmidless chlamydiae are incapable of disrupting their cytoskeletal entrapment and remain intracellular as stable mature inclusions that support high numbers of infectious organisms. By using deletion mutants of the eight plasmid-carried genes (Δpgp1to Δpgp8), we show that Pgp4, a transcriptional regulator of multiple chromosomal genes, is required for exit. Exit of chlamydiae is dependent on protein synthesis and is inhibited by the compound C1, an inhibitor of the type III secretion system (T3S). Exit of plasmid-free and Δpgp4organisms, which failed to lyse infected cells, was rescued by latrunculin B, an inhibitor of actin polymerization. Our findings describe a genetic mechanism of chlamydial exit from host cells that is dependent on an unknownpgp4-regulated chromosomal T3S effector gene.IMPORTANCEChlamydia's obligate intracellular life style requires both entry into and exit from host cells. Virulence factors that function in exiting are unknown. The chlamydial inclusion is stabilized late in the infection cycle by F-actin. A prerequisite of chlamydial exit is its ability to disassemble actin from the inclusion. We show that chlamydial plasmid-free organisms, and also a plasmid gene protein 4 (pgp4) null mutant, do not disassociate actin from the inclusion and fail to exit cells. We further provide evidence that Pgp4-regulated exit is dependent on the chlamydial type III secretion system. This study is the first to define a genetic mechanism that functions in chlamydial lytic exit from host cells. The findings also have practical implications for understanding why plasmid-free chlamydiae are highly attenuated and have the ability to elicit robust protective immune responses.


2008 ◽  
Vol 191 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Andreas K. J. Veenendaal ◽  
Charlotta Sundin ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.


2008 ◽  
Vol 76 (9) ◽  
pp. 4299-4310 ◽  
Author(s):  
Yue Zhang ◽  
James Murtha ◽  
Margaret A. Roberts ◽  
Richard M. Siegel ◽  
James B. Bliska

ABSTRACT Yersinia pseudotuberculosis uses a plasmid (pYV)-encoded type III secretion system (T3SS) to translocate a set of effectors called Yops into infected host cells. YopJ functions to induce apoptosis, and YopT, YopE, and YopH act to antagonize phagocytosis in macrophages. Because Yops do not completely block phagocytosis and Y. pseudotuberculosis can replicate in macrophages, it is important to determine if the T3SS modulates host responses to intracellular bacteria. Isogenic pYV-cured, pYV+ wild-type, and yop mutant Y. pseudotuberculosis strains were allowed to infect bone marrow-derived murine macrophages at a low multiplicity of infection under conditions in which the survival of extracellular bacteria was prevented. Phagocytosis, the intracellular survival of the bacteria, and the apoptosis of the infected macrophages were analyzed. Forty percent of cell-associated wild-type bacteria were intracellular after a 20-min infection, allowing the study of the macrophage response to internalized pYV+ Y. pseudotuberculosis. Interestingly, macrophages restricted survival of pYV+ but not pYV-cured or ΔyopB Y. pseudotuberculosis within phagosomes: only a small fraction of the pYV+ bacteria internalized replicated by 24 h. In addition, ∼20% of macrophages infected with wild-type pYV+ Y. pseudotuberculosis died of apoptosis after 20 h. Analysis of yop mutants expressing catalytically inactive effectors revealed that YopJ was important for apoptosis, while a role for YopE, YopH, and YopT in modulating macrophage responses to intracellular bacteria could not be identified. Apoptosis was reduced in Toll-like receptor 4-deficient macrophages, indicating that cell death required signaling through this receptor. Treatment of macrophages harboring intracellular pYV+ Y. pseudotuberculosis with chloramphenicol reduced apoptosis, indicating that the de novo bacterial protein synthesis was necessary for cell death. Our finding that the presence of a functional T3SS impacts the survival of both bacterium and host following phagocytosis of Y. pseudotuberculosis suggests new roles for the T3SS in Yersinia pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document