scholarly journals Effects of Cordycepin in Cordyceps militaris during Its Infection to Silkworm Larvae

2021 ◽  
Vol 9 (4) ◽  
pp. 681
Author(s):  
Tatsuya Kato ◽  
Konomi Nishimura ◽  
Ahmad Suparmin ◽  
Kazuho Ikeo ◽  
Enoch Y. Park

Cordyceps militaris produces cordycepin, a secondary metabolite that exhibits numerous bioactive properties. However, cordycepin pharmacology in vivo is not yet understood. In this study, the roles of cordycepin in C. militaris during its infection were investigated. After the injection of conidia, C. militaris NBRC100741 killed silkworm larvae more rapidly than NBRC103752. At 96 and 120 h, Cmcns genes (Cmcns1–4), which are part of the cordycepin biosynthesis gene cluster, were expressed in fat bodies and cuticles. Thus, cordycepin may be produced in the infection of silkworm larvae. Further, cordycepin enhanced pathogenicity toward silkworm larvae of Metarhizium anisopliae and Beauveria bassiana, that are also entomopathogenic fungi and do not produce cordycepin. In addition, by RNA-seq analysis, the increased expression of the gene encoding a lipoprotein 30K-8 (Bmlp20, KWMTBOMO11934) and decreased expression of genes encoding cuticular proteins (KWMTBOMO13140, KWMTBOMO13167) and a serine protease inhibitor (serpin29, KWMTBOMO08927) were observed when cordycepin was injected into silkworm larvae. This result suggests that cordycepin may aid the in vivo growth of C. militaris in silkworm larvae by the influence of the expression of some genes in silkworm larvae.

2003 ◽  
Vol 23 (11) ◽  
pp. 1251-1262 ◽  
Author(s):  
Vini G Khurana ◽  
Fredric B Meyer

Gene transfer involves the use of an engineered biologic vehicle known as a vector to introduce a gene encoding a protein of interest into a particular tissue. In diseases with known defects at a genetic level, gene transfer offers a potential means of restoring a normal molecular environment via vector-mediated entry (transduction) and expression of genes encoding potentially therapeutic proteins selectively in diseased tissues. The technology of gene transfer therefore underlies the concept of gene therapy and falls under the umbrella of the current genomics revolution. Particularly since 1995, numerous attempts have been made to introduce genes into intracranial blood vessels to demonstrate and characterize viable transduction. More recently, in attempting to translate cerebrovascular gene transfer technology closer to the clinical arena, successful transductions of normal human cerebral arteries ex vivo and diseased animal cerebral arteries in vivo have been reported using vasomodulatory vectors. Considering the emerging importance of gene-based strategies for the treatment of the spectrum of human disease, the goals of the present report are to overview the fundamentals of gene transfer and review experimental studies germane to the clinical translation of a technology that can facilitate genetic modification of cerebral blood vessels.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2019 ◽  
Author(s):  
Luther M. Swift ◽  
Morgan Burke ◽  
Devon Guerrelli ◽  
Manelle Ramadan ◽  
Marissa Reilly ◽  
...  

ABSTRACTRationaleThe heart continues to develop and mature after birth and into adolescence. Accordingly, cardiac maturation is likely to include a progressive refinement in both organ morphology and function during the postnatal period. Yet, age-dependent changes in cardiac electrophysiology and calcium handling have not yet been fully characterized.ObjectiveThe objective of this study, was to examine the relationship between cardiac maturation, electrophysiology, and calcium handling throughout postnatal development in a rat model.MethodsPostnatal rat cardiac maturation was determined by measuring the expression of genes involved in cell-cell coupling, electrophysiology, and calcium handling. In vivo electrocardiograms were recorded from neonatal, juvenile, and adult animals. Simultaneous dual optical mapping of transmembrane voltage and calcium transients was performed on isolated, Langendorff-perfused rat hearts (postnatal day 0–3, 4-7, 8-14, adult).ResultsYounger, immature hearts displayed slowed electrical conduction, prolonged action potential duration and increased ventricular refractoriness. Slowed calcium handling in the immature heart increased the propensity for calcium transient alternans which corresponded to alterations in the expression of genes encoding calcium handling proteins. Developmental changes in cardiac electrophysiology were associated with the altered expression of genes encoding potassium channels and intercalated disc proteins.ConclusionUsing an intact whole heart model, this study highlights chronological changes in cardiac electrophysiology and calcium handling throughout postnatal development. Results of this study can serve as a comprehensive baseline for future studies focused on pediatric cardiac research, safety assessment and/or preclinical testing using rodent models.


1999 ◽  
Vol 181 (9) ◽  
pp. 2789-2796 ◽  
Author(s):  
Jian Song ◽  
Tianhui Xia ◽  
Roy A. Jensen

ABSTRACT Pterin 4a-carbinolamine dehydratase is bifunctional in mammals. In addition to playing a catalytic role in pterin recycling in the cytoplasm, it plays a regulatory role in the nucleus, where it acts as a dimerization-cofactor component (called DCoH) for the transcriptional activator HNF-1α. A thus far unique operon in Pseudomonas aeruginosa contains a gene encoding a homolog (PhhB) of the regulatory dehydratase, together with genes encoding phenylalanine hydroxylase (PhhA) and aromatic aminotransferase (PhhC). Using complementation of tyrosine auxotrophy in Escherichia colias a functional test, we have found that the in vivo function of PhhA requires PhhB. Strikingly, mammalian DCoH was an effective substitute for PhhB, and either one was effective in trans. Surprisingly, the required presence of PhhB for complementation did not reflect a critical positive regulatory effect of phhB onphhA expression. Rather, in the absence of PhhB, PhhA was found to be extremely toxic in E. coli, probably due to the nonenzymatic formation of 7-biopterin or a similar derivative. However, bacterial PhhB does appear to exert modest regulatory effects in addition to having a catalytic function. PhhB enhances the level of PhhA two- to threefold, as was demonstrated by gene inactivation ofphhB in P. aeruginosa and by comparison of the levels of expression of PhhA in the presence and absence of PhhB inEscherichia coli. Experiments using constructs having transcriptional and translational fusions with a lacZreporter indicated that PhhB activates PhhA at the posttranscriptional level. Regulation of PhhA and PhhB is semicoordinate; both PhhA and PhhB are induced coordinately in the presence of eitherl-tyrosine or l-phenylalanine, but PhhB exhibits a significant basal level of activity that is lacking for PhhA. Immunoprecipitation and affinity chromatography showed that PhhA and PhhB form a protein-protein complex.


2002 ◽  
Vol 15 (8) ◽  
pp. 808-816 ◽  
Author(s):  
Marta de Torres Zabela ◽  
Isabelle Fernandez-Delmond ◽  
Totte Niittyla ◽  
Pedro Sanchez ◽  
Murray Grant

Phospholipase D (PLD; EC 3.1.4.4) has been linked to a number of cellular processes, including Tran membrane signaling and membrane degradation. Four PLD genes (α, β, γ1, and γ2) have been cloned from Arabidopsis thalami. They encode isoforms with distinct regulatory and catalytic properties but little is known about their physiological roles. Using cDNA amplified fragment length polymorphism display and RNA blot analysis, we identified Arabidopsis PLDγ1 and a gene encoding a lysophospholipase (EC 3.1.1.5), lysoPL1, to be differentially expressed during host response to virulent and avirulent pathogen challenge. Examination of the expression pattern of phospholipase genes induced in response to pathogen challenge was undertaken using the lysoPL1 and gene-specific probes corresponding to the PLD isoforms α, β, and γ1. Each mRNA class exhibited different temporal patterns of expression after infiltration of leaves with Pseudomonas syringae pv. tomato with or without avrRpm1. PLDα was rapidly induced and remained constitutively elevated regardless of treatment. PLDβ was transiently induced upon pathogen challenge. However, mRNA for the lysoPL1 and PLDγ1 genes showed enhanced and sustained elevation during an incompatible interaction, in both ndr1 and overexpressing NahG genetic backgrounds. Further evidence for differential engagement of these PLD mRNA during defense responses, other than gene-for-gene interactions, was demonstrated by their response to salicylic acid treatment or wounding. Our results indicate that genes encoding lysoPL1, PLDγ1, and PLDβ are induced during early responses to pathogen challenge and, additionally, PLDγ1 and lysoPL1 are specifically upregulated during gene-for-gene interactions, leading to the hypersensitive response. We discuss the possible role of these genes in plant-pathogen interactions.


1999 ◽  
Vol 19 (3) ◽  
pp. 2044-2050 ◽  
Author(s):  
Seok Hee Park ◽  
Sang Seok Koh ◽  
Jae Hwan Chun ◽  
Hye Jin Hwang ◽  
Hyen Sam Kang

ABSTRACT Expression of genes encoding starch-degrading enzymes is regulated by glucose repression in the yeast Saccharomyces cerevisiae. We have identified a transcriptional repressor, Nrg1, in a genetic screen designed to reveal negative factors involved in the expression of STA1, which encodes a glucoamylase. TheNRG1 gene encodes a 25-kDa C2H2zinc finger protein which specifically binds to two regions in the upstream activation sequence of the STA1 gene, as judged by gel retardation and DNase I footprinting analyses. Disruption of theNRG1 gene causes a fivefold increase in the level of theSTA1 transcript in the presence of glucose. The expression of NRG1 itself is inhibited in the absence of glucose. DNA-bound LexA-Nrg1 represses transcription of a target gene 10.7-fold in a glucose-dependent manner, and this repression is abolished in bothssn6 and tup1 mutants. Two-hybrid and glutathione S-transferase pull-down experiments show an interaction of Nrg1 with Ssn6 both in vivo and in vitro. These findings indicate that Nrg1 acts as a DNA-binding repressor and mediates glucose repression of the STA1 gene expression by recruiting the Ssn6-Tup1 complex.


2006 ◽  
Vol 188 (23) ◽  
pp. 8033-8043 ◽  
Author(s):  
Grace L. Axler-DiPerte ◽  
Virginia L. Miller ◽  
Andrew J. Darwin

ABSTRACT Yersinia enterocolitica causes human gastroenteritis, and many isolates have been classified as either “American” or “non-American” strains based on their geographic prevalence and virulence properties. In this study we describe identification of a transcriptional regulator that controls expression of the Y. enterocolitica ytxAB genes. The ytxAB genes have the potential to encode an ADP-ribosylating toxin with similarity to pertussis toxin. However, a ytxAB null mutation did not affect virulence in mice. Nevertheless, the ytxAB genes are conserved in many Y. enterocolitica strains. Interestingly, American and non-American strains have different ytxAB alleles encoding proteins that are only 50 to 60% identical. To obtain further insight into the ytxAB locus, we investigated whether it is regulated as part of a known or novel regulon. Transposon mutagenesis identified a LysR-like regulator, which we designated YtxR. Expression of ytxR from a nonnative promoter increased Φ(ytxA-lacZ) operon fusion expression up to 35-fold. YtxR also activated expression of its own promoter. DNase I footprinting showed that a His6-YtxR fusion protein directly interacted with the ytxA and ytxR control regions at similar distances upstream of their probable transcription initiation sites, identified by primer extension. Deletion analysis demonstrated that removal of the regions protected by His6-YtxR in vitro eliminated YtxR-dependent induction in vivo. The ytxAB locus is not present in most Yersinia species. In contrast, ytxR is conserved in multiple Yersinia species, as well as in the closely related organisms Photorhabdus luminescens and Photorhabdus asymbiotica. These observations suggest that YtxR may play a conserved role involving regulation of other genes besides ytxAB.


2019 ◽  
Vol 7 (12) ◽  
pp. 623
Author(s):  
Michał Śmiga ◽  
Teresa Olczak

Porphyromonas gingivalis is one of the etiological agents of chronic periodontitis. Both heme and oxidative stress impact expression of genes responsible for its survival and virulence. Previously we showed that P. gingivalis ferric uptake regulator homolog affects expression of a gene encoding a putative Crp/Fnr superfamily member, termed P. gingivalis redox-sensing protein (PgRsp). Although PgRsp binds heme and shows the highest similarity to proteins assigned to the CooA family, it could be a member of a novel, separate family of proteins with unknown function. Expression of the pgrsp gene is autoregulated and iron/heme dependent. Genes encoding proteins engaged in the oxidative stress response were upregulated in the pgrsp mutant (TO11) strain compared with the wild-type strain. The TO11 strain showed higher biomass production, biofilm formation, and coaggregation ability with Tannerella forsythia and Prevotella intermedia. We suggest that PgRsp may regulate production of virulence factors, proteases, Hmu heme acquisition system, and FimA protein. Moreover, we observed growth retardation of the TO11 strain under oxidative conditions and decreased survival ability of the mutant cells inside macrophages. We conclude that PgRsp protein may play a role in the oxidative stress response using heme as a ligand for sensing changes in redox status, thus regulating the alternative pathway of the oxidative stress response alongside OxyR.


2011 ◽  
Vol 22 (17) ◽  
pp. 3263-3275 ◽  
Author(s):  
T. T. Giang Ho ◽  
Audrey Stultiens ◽  
Johanne Dubail ◽  
Charles M. Lapière ◽  
Betty V. Nusgens ◽  
...  

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug–activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor α (RhoGDIα) and the overexpression of a RhoA mutant unable to bind RhoGDIα suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIα. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.


Sign in / Sign up

Export Citation Format

Share Document