scholarly journals Antileishmanial Drug Discovery and Development: Time to Reset the Model?

2021 ◽  
Vol 9 (12) ◽  
pp. 2500
Author(s):  
Ana Isabel Olías-Molero ◽  
Concepción de la Fuente ◽  
Montserrat Cuquerella ◽  
Juan J. Torrado ◽  
José M. Alunda

Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. The disease affects humans and animals, particularly dogs, provoking cutaneous, mucocutaneous, or visceral processes depending on the Leishmania sp. and the host immune response. No vaccine for humans is available, and the control relies mainly on chemotherapy. However, currently used drugs are old, some are toxic, and the safer presentations are largely unaffordable by the most severely affected human populations. Moreover, its efficacy has shortcomings, and it has been challenged by the growing reports of resistance and therapeutic failure. This manuscript presents an overview of the currently used drugs, the prevailing model to develop new antileishmanial drugs and its low efficiency, and the impact of deconstruction of the drug pipeline on the high failure rate of potential drugs. To improve the predictive value of preclinical research in the chemotherapy of leishmaniasis, several proposals are presented to circumvent critical hurdles—namely, lack of common goals of collaborative research, particularly in public–private partnership; fragmented efforts; use of inadequate surrogate models, especially for in vivo trials; shortcomings of target product profile (TPP) guides.

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 629
Author(s):  
Megan M. Dunagan ◽  
Kala Hardy ◽  
Toru Takimoto

Influenza A virus (IAV) is a significant human pathogen that causes seasonal epidemics. Although various types of vaccines are available, IAVs still circulate among human populations, possibly due to their ability to circumvent host immune responses. IAV expresses two host shutoff proteins, PA-X and NS1, which antagonize the host innate immune response. By transcriptomic analysis, we previously showed that PA-X is a major contributor for general shutoff, while shutoff active NS1 specifically inhibits the expression of host cytokines, MHC molecules, and genes involved in innate immunity in cultured human cells. So far, the impact of these shutoff proteins in the acquired immune response in vivo has not been determined in detail. In this study, we analyzed the effects of PA-X and NS1 shutoff activities on immune response using recombinant influenza A/California/04/2009 viruses containing mutations affecting the expression of shutoff active PA-X and NS1 in a mouse model. Our data indicate that the virus without shutoff activities induced the strongest T and B cell responses. Both PA-X and NS1 reduced host immune responses, but shutoff active NS1 most effectively suppressed lymphocyte migration to the lungs, antibody production, and the generation of IAV specific CD4+ and CD8+ T cells. NS1 also prevented the generation of protective immunity against a heterologous virus challenge. These data indicate that shutoff active NS1 plays a major role in suppressing host immune responses against IAV infection.


2021 ◽  
Vol 17 ◽  
Author(s):  
Thiago M. de Aquino ◽  
Paulo H. B. França ◽  
Érica E. E. S. Rodrigues ◽  
Igor J. S. Nascimento ◽  
Paulo F. S. Santos-Júnior ◽  
...  

Background: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. Objective: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "in-house" library of both AGH and TSC derivatives and their structurally-related compounds. Method: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. Result: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. Conclusion: The promising antileishmanial activity of three AGH’s and three TSC’s was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are under progress, which will help to choose the best hits for in vivo experiments.


2020 ◽  
Author(s):  
Evelynne Paris-Oller ◽  
Sergio Navarro-Serna ◽  
Cristina Soriano-Úbeda ◽  
Jordana Sena Lopes ◽  
Carmen Matas ◽  
...  

Abstract Background: In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits.Results: The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group.Conclusions: The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 226 ◽  
Author(s):  
Johan Nordgren ◽  
Lennart Svensson

Noroviruses are the most common etiological agent of acute gastroenteritis worldwide. Despite their high infectivity, a subpopulation of individuals is resistant to infection and disease. This susceptibility is norovirus genotype-dependent and is largely mediated by the presence or absence of human histo-blood group antigens (HBGAs) on gut epithelial surfaces. The synthesis of these HBGAs is mediated by fucosyl- and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis) and ABO(H) genes. The so-called non-secretors, having an inactivated FUT2 enzyme, do not express blood group antigens and are resistant to several norovirus genotypes, including the predominant GII.4. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. Here, we review previous in vivo studies on genetic susceptibility to norovirus infection. These are discussed in relation to population susceptibility, vaccines, norovirus epidemiology and the impact on public health.


ILAR Journal ◽  
2019 ◽  
Vol 60 (2) ◽  
pp. 113-119
Author(s):  
Christopher Cheleuitte-Nieves ◽  
Neil S Lipman

Abstract Reproducible and reliable scientific investigation depends on the identification and consideration of various intrinsic and extrinsic factors that may affect the model system used. The impact of these factors must be managed during all phases of a study: planning, execution, and reporting. The value of in vivo (animal) research has come under increasing scrutiny over the past decade because of multiple reports documenting poor translatability to human studies. These failures have been attributed to various causes, including poor study design and execution as well as deficiencies in reporting. It is important to recognize that achieving reproducible and reliable preclinical research results is a joint responsibility that requires a partnership between the investigative team and the animal care and use program staff. The myriad of intrinsic factors, such as species, strain/substrain, age, sex, physiologic and health status, and extrinsic factors, including temperature, humidity, lighting, housing system, and diet, need to be recognized and managed during study planning and execution, as they can influence animal physiology and biological response. Of equal importance is the need to document and report these details. The ARRIVE and PREPARE guidelines were developed by concerned scientists, veterinarians, statisticians, journal editors, and funding agencies to assist investigative teams and scientific journals manage and report on intrinsic and extrinsic factors to improve reproducibility and reliability. This issue of the ILAR Journal will focus on the various extrinsic factors that have been recognized to confound animal research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
E. París-Oller ◽  
S. Navarro-Serna ◽  
C. Soriano-Úbeda ◽  
J. S. Lopes ◽  
C. Matás ◽  
...  

Abstract Background In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits. Results The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3430
Author(s):  
Roxan F. C. P. A. Helderman ◽  
Daan R. Löke ◽  
Pieter J. Tanis ◽  
Jurriaan B. Tuynman ◽  
Wim Ceelen ◽  
...  

Hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment modality for patients with peritoneal metastasis (PM) of various origins which aims for cure in combination with cytoreductive surgery (CRS). Efficacy of CRS-HIPEC depends on patient selection, tumor type, delivery technique, and treatment parameters such as temperature, carrier solution, type of drug, dosage, volume, and treatment duration. Preclinical research offers a powerful tool to investigate the impact of these parameters and to assist in designing potentially more effective treatment protocols and clinical trials. The different methodologies for peritoneal disease and HIPEC are variable. This study aims to review the objectives, methods, and clinical relevance of in vivo preclinical HIPEC studies found in the literature. In this review, recommendations are provided and possible pitfalls are discussed on the choice of type of animal and tumor model per stratified parameters and study goal. The guidelines presented in this paper can improve the clinical relevance and impact of future in vivo HIPEC experiments.


2020 ◽  
Author(s):  
Evelynne Paris-Oller ◽  
Sergio Navarro-Serna ◽  
Cristina Soriano-Úbeda ◽  
Jordana Sena Lopes ◽  
Carmen Matas ◽  
...  

Abstract Background: In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of an improved IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimal invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits.Results: The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and improved (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions: The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but can mitigate the impact of artificial procedures in the offspring.


2018 ◽  
Author(s):  
Yolande Grobler ◽  
Chi Y. Yun ◽  
David J. Kahler ◽  
Casey M. Bergman ◽  
Hangnoh Lee ◽  
...  

AbstractWolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.Author summaryInsects such as mosquitos act as vectors to spread devastating human diseases such as Dengue, West Nile, and Zika. It is critical to develop control strategies to prevent the transmission of these diseases to human populations. A novel strategy takes advantage of an endosymbiotic bacterium Wolbachia pipientis. The presence of this bacterium in insect vectors prevents successful transmission of RNA viruses. The degree to which viruses are blocked by Wolbachia is dependent on the levels of the bacteria present in the host such that higher Wolbachia levels induce a stronger antiviral effect. In order to use Wolbachia as a tool against vector-borne virus transmission a better understanding of host influences on Wolbachia levels is needed. Here we performed a genome-wide RNAi screen in a model host system Drosophila melanogaster infected with Wolbachia to identify host systems that affect Wolbachia levels. We found that host translation can influence Wolbachia levels in the host.


2020 ◽  
pp. 174749302097224
Author(s):  
Siobhan Crilly ◽  
Sarah E Withers ◽  
Stuart M Allan ◽  
Adrian R Parry-Jones ◽  
Paul R Kasher

Intracerebral hemorrhage is a devastating global health burden with limited treatment options and is responsible for 49% of 6.5 million annual stroke-related deaths comparable to ischemic stroke. Despite the impact of intracerebral hemorrhage, there are currently no effective treatments and so weaknesses in the translational pipeline must be addressed. There have been many preclinical studies in intracerebral hemorrhage models with positive outcomes for potential therapies in vivo, but beyond advancing the understanding of intracerebral hemorrhage pathology, there has been no translation toward successful clinical application. Multidisciplinary preclinical research, use of multiple models, and validation in human tissue are essential for effective translation. Repurposing of therapeutics for intracerebral hemorrhage may be the most promising strategy to help relieve the global health burden of intracerebral hemorrhage. Here, we have reviewed the existing literature to highlight repurposable drugs with successful outcomes in preclinical models of intracerebral hemorrhage that have realistic potential for development into the clinic for intracerebral hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document