scholarly journals Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation

2021 ◽  
Vol 9 (12) ◽  
pp. 2544
Author(s):  
Haicui Wu ◽  
Tim-Fat Shum ◽  
Jiachi Chiou

Background: There are several potential healthy or nutritional benefits from the use of lactic acid bacteria (LAB) in foods. This study aimed to characterize the LAB isolates from kimchi, yogurt, and baby feces in the Hong Kong area and evaluate their performance in fermented soymilk, which allowed us to assess their potential use in future experiments. Methods: General characteristics including tolerance to acid, NaCl, bile salts and phenol, antimicrobial activity to various pathogens, and adhesive ability to Caco-2 cells were evaluated using 18 LAB in this study. To further demonstrate the influence of such isolates in soymilk fermentation, we measured viability by plating and noting changes in pH, amino acid content, aglyconic isoflavones content and antioxidant capacities in vitro, such as scavenging ability, and iron chelating ability. Results: In this study, various LAB isolates belonging to Lactobacillusrhamnosus, Lactobacillus sakei, Lactiplantibacillus plantarum, andLeuconostocmesenteroides isolated in Hong Kong were evaluated. L. plantarum isolates R7, AC12, and AC14.1, and L. rhamnosus AC1 showed higher tolerance to acid, NaCl, bile salts, and phenol as compared to the other isolates tested. L. plantarum isolates AC12, AC13 and AC14.1, and L. rhamnosus AC1 harbored strong antimicrobial activity. L. plantarum isolates R7, AC12, AC13 and AC14.1, and L. paracasei isolates R6 and R8 showed higher adhesive ability than the other tested isolates. In soymilk, the viable numbers of L. paracasei R5, L. plantarum R7, L. rhamnosus AC1, L. sakei AC2, and Leu. mesenteroides AC5 were much higher than the other tested isolates after 48 h of fermentation. The pH value measuring the lactic acid level in soymilk fermented by L. plantarum AC14.1 was the lowest in comparison to those in soymilk fermented by other isolates. In addition, the levels of free amino acids and isoflavones in the aglycone forms of L. rhamnosus AC1-fermented soymilk were the highest. L. rhamnosus AC1-fermented soymilk also showed the highest antioxidant potential, including DPPH scavenging ability and iron chelating ability. Conclusions: In general, L. plantarum isolates R7 and AC14.1 and L. rhamnosus AC1 exhibited higher tolerance to challenging conditions as compared to the other isolates. Moreover, L. rhamnosus AC1 exhibited superior performance in soymilk fermentation and potential as a starter and probiotic culture.

2013 ◽  
Vol 14 (3) ◽  
Author(s):  
Rofiq Sunaryanto ◽  
Bambang Marwoto

Dadih is one of the traditional fermented milk products of West Sumatera. Dadih contain a lot of lactic acid bacteria that acts as a coagulant and preservative. Some lactic acid bacteria also act as a probiotic agent because of characteristics that are resistant to acidic conditions. Some of the main requirements of microbes that can be used as probiotic microbes were resistant to low pH, bile salts, able to colonize, and having antimicrobial activity. Each species of the genus Lactobacillus havedifferent characteristics. This characteristic are influenced by the environment in which the bacteria live. Isolation, identification and characterization of lactic acid bacteria derived from buffalo milk were done. The results of isolated lactic acid bacteria was Lactobacillus plantarum. The characterization of Lactobacillus plantarum indicated that these isolates were able to survive in a concentration of medium containing 0.5% bile salts, resistant to acidic media until pH 2, have antimicrobial activity (inhibit Escherichia coli, Staphylococcus aureus and Enterococcus faecalis).


Author(s):  
Quentin Metsatedem Tongwa ◽  
Linda Manet ◽  
Hippolyte Tene Mouafo ◽  
Bertrand Tatsinkou Fossi

Aim: The present study was undertaken to assess the probiotic potential of lactic acid bacteria strains isolated from raphia palm wine (Raffia mambillensis O.) of the South West region of Cameroon. Study Design: The study site and sample were randomly chosen and the responses assessed were submitted to analyses of variance. Place and Duration of Study: The study was carried out in Ekona in the South West region of Cameroon, between February 2017 and October 2018. Methodology: Physicochemical analyses were performed to characterize the Raphia palm wine samples. Lactic acid bacteria were isolated from these samples using pour plate method, and the isolates were tested for their antimicrobial activity, low pH and bile salts tolerance, antibiotic sensitivity, hemolytic activity and enzymes production. The active isolates were identified phenotypically using API 50 CHL. Results: The results revealed that among the nine isolates, only three were active against Escherichia coli BL21, Escherichia coli, Salmonella typhi, Salmonella enterica and Staphylococcus aureus with inhibition diameters ranging from 10 to 25 mm. The three isolates which exhibited antimicrobial activity were able to survive at simulated stomach pH (pH 3.0) with survival rate above 80% and in the presence of bile salts at 1% with survival rates above 50%. All three isolates gave negative results for hemolytic activity and were resistant to most antibiotic treatments. These three isolates produced β-galactosidase, which is beneficial for lactose intolerance. They also produced some non-carcinogenic enzymes including leucine arylamidase, crystine arylamidase, acid phosphatase, α-galactosidase, α-glucosidase, β-glucosidase, and N-acetyl-β-glucosamidase. Identification of these three isolates with API kit 50 CHL reveals that they are Lactobacillus lactis, Lactobacillus plantarum and Lactobacillus brevis. Conclusion: Our findings revealed that raphia palm wine can be an excellent source of probiotic lactic acid bacteria.


2021 ◽  
Vol 9 (5) ◽  
pp. 1044
Author(s):  
Jeong A Kim ◽  
Geun Su Kim ◽  
Se Mi Choi ◽  
Myeong Seon Kim ◽  
Do Young Kwon ◽  
...  

Hardening of cheese is one of major issues that degrade the quality of Home Meal Replacement (HMR) foods containing cheese such as Cheese-ddukbokki rice cake (CD, stir-fried rice cakes with shredded cheese). The quality of cheese, such as pH, proteolytic, and flavor properties, depends on various lactic acid bacteria (LAB) used in cheese fermentation. The hardening of cheese is also caused by LAB. In this study, various LAB strains were isolated from CD samples that showed rapid hardening. The correlation of LAB with the hardening of cheese was investigated. Seven of the CD samples with different manufacturing dates were collected and tested for hardening properties of cheese. Among them, strong-hardening of cheese was confirmed for two samples and weak-hardening was confirmed for one sample. All LAB in two strong-hardening samples and 40% of LAB in one weak-hardening sample were identified as Latilactobacillus curvatus. On the other hand, most LAB in normal cheese samples were identified as Leuconostoc mesenteroides and Lactobacillus casei. We prepared cheese samples in which L. curvatus (LC-CD) and L. mesenteroides (LM-CD) were most dominant, respectively. Each CD made of the prepared cheese was subjected to quality test for 50 days at 10 °C. Hardening of cheese with LC-CD dominant appeared at 30 days. However, hardening of cheese with LM-CD dominant did not appear until 50 days. The pH of the LC-CD was 5.18 ± 0.04 at 30 days, lower than that of LM-CD. The proteolytic activity of LC-CD sample was 2993.67 ± 246.17 units/g, higher than that of LM-CD sample (1421.67 ± 174.5 units/g). These results indicate that high acid production and high protease activity of L. curvatus might have caused hardening of cheese.


2019 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Nurul Octavia Wasis ◽  
Nyoman Semadi Antara ◽  
Ida Bagus Wayan Gunam

Tabah bamboo shoot pickle is one of the fermented food which is the source of lactic acid bacteria.  Lactic acid bacteria (LAB) is beneficial to health because it has the ability as a probiotic. Lactic acid bacteria that have probiotic criteria should have resistance to low pH and bile salts. This study aims to determine isolates of lactic acid bacteria isolated from tabah bamboo shoot pickle resistant to low pH and bile salts (NaDC). Lactic acid bacteria were tested to low pH by using MRS broth that have different pH (pH 2, pH 3, pH 4 and pH 6.2 as a control) incubated at 37ºC for 3 hours. isolates were survive in low pH then continued in bile salt resistance test with 0.3% bile salt concentration for 15 minutes, 30 minutes, 45 minutes, 60 minutes and 24 hours. The results showed that three isolates out of 88 isolates had ability to grow in low pH and in medium supplemented by NaDC 0,3%. The isolates are AR 3057, AR 3101 and AR 6152 which can be used as candidat of  probiotic. Keywords : Tabah bamboo shoot pickle, lactic acid bacteria, probiotic, low pH, bile salt


2013 ◽  
Vol 79 (18) ◽  
pp. 5670-5681 ◽  
Author(s):  
Philipp Adler ◽  
Christoph Josef Bolten ◽  
Katrin Dohnt ◽  
Carl Erik Hansen ◽  
Christoph Wittmann

ABSTRACTIn the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains ofL. fermentumandL. plantarumrevealed major differences in their fluxes. TheL. fermentumstrains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas onlyL. fermentumNCC 575 used fructose to form mannitol. In contrast,L. plantarumstrains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of differentL. fermentumandL. plantarumstrains indicated a dominant (96%) contribution ofL. fermentumNCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures.L. fermentumNCC 575 might be one candidate due to its superior performance in flux activity.


2014 ◽  
Vol 52 (7) ◽  
pp. 4124-4134 ◽  
Author(s):  
Joana Šalomskienė ◽  
Asta Abraitienė ◽  
Dovilė Jonkuvienė ◽  
Irena Mačionienė ◽  
Jūratė Repečkienė

1956 ◽  
Vol 23 (1) ◽  
pp. 120-125 ◽  
Author(s):  
J. Czulak ◽  
Jill Naylor

A lysogenic culture, prepared in the laboratory from a strain of Streptococcus lactis, was used as a cheese starter in commercial factories. It was attacked in turn by two other unrelated phage races. The lysogenic condition, which involved slight morphological and physiological changes, persisted in the subsequent forms resistant to one or both the new phage races. Acquired resistance to any one of the three phages did not protect the culture from the other two phages.In nature such interactions between phage races and lactic acid bacteria must be constantly taking place, giving rise to similarly related strains.Two of the three phage races produced spreading haloes around their plaques due to a lysin released during phage action. The lysin may also interfere with the survival of secondary growth after attack by these phage races. Production of this type of lysin is thus a property of the phage race and not of the bacterial strain.


Sign in / Sign up

Export Citation Format

Share Document