scholarly journals Microbial Community Successional Changes in a Full-Scale Mesophilic Anaerobic Digester from the Start-Up to the Steady-State Conditions

2021 ◽  
Vol 9 (12) ◽  
pp. 2581
Author(s):  
Barbara Tonanzi ◽  
Simona Crognale ◽  
Andrea Gianico ◽  
Stefano Della Sala ◽  
Paola Miana ◽  
...  

Anaerobic digestion is a widely used technology for sewage sludge stabilization and biogas production. Although the structure and composition of the microbial communities responsible for the process in full-scale anaerobic digesters have been investigated, little is known about the microbial successional dynamics during the start-up phase and the response to variations occurring in such systems under real operating conditions. In this study, bacterial and archaeal population dynamics of a full-scale mesophilic digester treating activated sludge were investigated for the first time from the start-up, performed without adding external inoculum, to steady-state operation. High-throughput 16S rRNA gene sequencing was used to describe the microbiome evolution. The large majority of the reads were affiliated to fermentative bacteria. Bacteroidetes increased over time, reaching 22% of the total sequences. Furthermore, Methanosaeta represented the most abundant methanogenic component. The specific quantitative data generated by real-time PCR indicated an enrichment of bacteria and methanogens once the steady state was reached. The analysis allowed evaluation of the microbial components more susceptible to the shift from aerobic to anaerobic conditions and estimation of the microbial components growing or declining in the system. Additionally, activated sludge was investigated to evaluate the microbial core selected by the WWTP operative conditions.

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1355-1363 ◽  
Author(s):  
C-W. Kim ◽  
H. Spanjers ◽  
A. Klapwijk

An on-line respiration meter is presented to monitor three types of respiration rates of activated sludge and to calculate effluent and influent short term biochemical oxygen demand (BODst) in the continuous activated sludge process. This work is to verify if the calculated BODst is reliable and the assumptions made in the course of developing the proposed procedure were acceptable. A mathematical model and a dynamic simulation program are written for an activated sludge model plant along with the respiration meter based on mass balances of BODst and DO. The simulation results show that the three types of respiration rate reach steady state within 15 minutes under reasonable operating conditions. As long as the respiration rate reaches steady state the proposed procedure calculates the respiration rate that is equal to the simulated. Under constant and dynamic BODst loading, the proposed procedure is capable of calculating the effluent and influent BODst with reasonable accuracy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 487-492 ◽  
Author(s):  
Y. Shang ◽  
B.R. Johnson ◽  
R. Sieger

A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.


2001 ◽  
Vol 43 (7) ◽  
pp. 39-46 ◽  
Author(s):  
I. Queinnec ◽  
D. Dochain

This paper discusses the steady-state modelling of thickening in circular secondary settlers of activated sludge processes. The limitations of the solid flux theory basic models to represent steady-state operating conditions serve as a basis to introduce more sophisticated models derived from computational fluid dynamics. Parameter identification and sensitivity studies have been performed from lab-scale continuous experiments.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
María Victoria Pérez ◽  
Leandro D. Guerrero ◽  
Esteban Orellana ◽  
Eva L. Figuerola ◽  
Leonardo Erijman

ABSTRACT Understanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of 3 years, including a 9-month period of disturbance characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons, and the in situ growth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the rRNA (rrn) operon. Despite moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, is the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions. IMPORTANCE Disturbance is a key determinant of community assembly and dynamics in natural and engineered ecosystems. Microbiome response to disturbance is thought to be influenced by bacterial growth traits and life history strategies. In this time series observational study, the response to disturbance of microbial communities in a full-scale activated sludge wastewater treatment plant was assessed by computing specific cellular traits of genomes retrieved from metagenomes. It was found that the genomes observed in disturbed periods have more copies of the rRNA operon than genomes observed in stable periods, whereas the in situ mean relative growth rates of bacteria present during stable and disturbed periods were indistinguishable. From these intriguing observations, we infer that the length of the lag phase might be a growth trait that affects the microbial response to disturbance. Further exploration of this hypothesis could contribute to better understanding of the adaptive response of microbiomes to unsteady environmental conditions.


2005 ◽  
Vol 55 (1) ◽  
pp. 433-436 ◽  
Author(s):  
Hideki Yamamura ◽  
Masayuki Hayakawa ◽  
Youji Nakagawa ◽  
Tomohiko Tamura ◽  
Tetsuro Kohno ◽  
...  

Chemotaxonomic and morphological characterization of two actinomycete strains, MS1-3T and AS4-2, respectively isolated from moat sediment and scumming activated sludge, was carried out. This characterization clearly demonstrated that strains MS1-3T and AS4-2 belong to the genus Nocardia. 16S rRNA gene sequencing studies showed that these isolates are most closely related to Nocardia beijingensis (98·1–98·3 % similarity), Nocardia brasiliensis (97·9–98·0 %) and Nocardia tenerifensis (97·8–97·9 %). However, the results of DNA–DNA hybridizations and physiological and biochemical tests showed that strains MS1-3T and AS4-2 could be differentiated from their closest phylogenetic relatives both genotypically and phenotypically. It is proposed that the two isolates be classified as representatives of a novel species of Nocardia, Nocardia takedensis sp. nov. The type strain is MS1-3T (=NBRC 100417T=DSM 44801T); AS4-2 (=NBRC 100418=DSM 44802) is a reference strain.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 267-272 ◽  
Author(s):  
S.J. Hall ◽  
P. Hugenholtz ◽  
N. Siyambalapitiya ◽  
J. Keller ◽  
L.L. Blackall

Chemical analytical data has long been used to monitor the performance of activated sludge plants even though the process relies on the performance of microorganisms. It is now evident that a rapid and reliable quantitative method is required, to be able to monitor the organisms responsible for nutrient transformation and their activities, allowing avenues for more efficient nutrient removal. The development of real-time or quantitative polymerase chain reaction (PCR) also known as TaqMan® or 5′-nuclease assay has allowed the rapid, quantitative analysis of DNA templates, eliminating some of the variability traditionally associated with other quantitative techniques. In this study analysis of Nitrospira spp., one of the key organisms in nitrite oxidation in wastewater treatment, was used to validate real-time PCR for the their quantification in activated sludge. A probe and primer set, targeting the 16S rRNA gene of Nitrospira spp. was designed according to the constraints of the TaqMan® specifications. Samples used to evaluate the method included DNA from the sludge from full-scale wastewater treatment plants and laboratory scale systems. The reproducibility, quantitative efficiency and specificity were assessed in the evaluation. It was concluded that the method is sensitive and reproducible but has some constraints on the quantitative efficiency. A survey of full-scale systems for Nitrospira spp. was carried out and the results are presented here.


Sign in / Sign up

Export Citation Format

Share Document