scholarly journals Use of Stress Signals of Their Attached Bacteria to Monitor Sympagic Algae Preservation in Canadian Arctic Sediments

2021 ◽  
Vol 9 (12) ◽  
pp. 2626
Author(s):  
Rémi Amiraux ◽  
Bonin Patricia ◽  
Burot Christopher ◽  
Rontani Jean-François

Based on the strong aggregation of sympagic (ice-associated) algae and the high mortality or inactivity of bacteria attached to them, it was previously hypothesized that sympagic algae should be significant contributors to the export of carbon to Arctic sediments. In the present work, the lipid content of 30 sediment samples collected in the Canadian Arctic was investigated to test this hypothesis. The detection of high proportions of trans vaccenic fatty acid (resulting from cis-trans isomerase (CTI) activity of bacteria under hypersaline conditions) and 10S-hydroxyhexadec-8(trans)-enoic acid (resulting from 10S-DOX bacterial detoxification activity in the presence of deleterious free palmitoleic acid) confirmed: (i) the strong contribution of sympagic material to some Arctic sediments, and (ii) the impaired physiological status of its associated bacterial communities. Unlike terrestrial material, sympagic algae that had escaped zooplanktonic grazing appeared relatively preserved from biotic degradation in Arctic sediments. The expected reduction in sea ice cover resulting from global warming should cause a shift in the relative contributions of ice-associated vs. pelagic algae to the seafloor, and thus to a strong modification of the carbon cycle.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1461
Author(s):  
Hao Fang ◽  
Nan Ye ◽  
Kailong Huang ◽  
Junnan Yu ◽  
Shuai Zhang

Shrimp aquaculture environments are a natural reservoir of multiple antibiotic resistance genes (ARGs) due to the overuse of antibiotics. Nowadays, the prevalence of these kinds of emerging contaminants in shrimp aquaculture environments is still unclear. In this study, high-throughput sequencing techniques were used to analyze the distribution of ARGs and mobile genetic elements (MGEs), bacterial communities, and their correlations in water and sediment samples in two types of typical shrimp (Procambarus clarkii and Macrobrachium rosenbergii) freshwater aquaculture environments. A total of 318 ARG subtypes within 19 ARG types were detected in all the samples. The biodiversity and relative abundance of ARGs in sediment samples showed much higher levels compared to water samples from all ponds in the study area. Bacitracin (17.44–82.82%) and multidrug (8.57–49.70%) were dominant ARG types in P. clarkii ponds, while sulfonamide (26.33–39.59%) and bacitracin (12.75–37.11%) were dominant ARG types in M. rosenbergii ponds. Network analysis underlined the complex co-occurrence patterns between bacterial communities and ARGs. Proteobacteria, Cyanobacteria, and Actinobacteria exhibited a high abundance in all samples, in which C39 (OTU25355) and Hydrogenophaga (OTU162961) played important roles in the dissemination of and variation in ARGs based on their strong connections between ARGs and bacterial communities. Furthermore, pathogens (e.g., Aeromonadaceae (OTU195200) and Microbacteriaceae (OTU16033)), which were potential hosts for various ARGs, may accelerate the propagation of ARGs and be harmful to human health via horizontal gene transfer mediated by MGEs. Variation partitioning analysis further confirmed that MGEs were the most crucial contributor (74.76%) driving the resistome alteration. This study may help us to understand the non-ignorable correlations among ARGs, bacterial diversity, and MGEs in the shrimp freshwater aquaculture environments.


2021 ◽  
Author(s):  
Anne Corminboeuf ◽  
Jean-Carlos Montero-Serrano ◽  
Richard St-Louis

<p>The concentrations of 23 polycyclic aromatic hydrocarbons (PAHs; 16 parent and 7 alkylated PAHs) in 113 surface marine sediment samples, 13 on-land sediment samples and 8 subsampled push cores retrieved from the Canadian Arctic Archipelago (CAA) were calculated. PAHs were extracted via accelerated solvent extraction (ASE) and quantified via gas chromatography-mass spectrometry (GC-MS). The sums of the concentrations 16 PAHs in the surface sediments ranged from 7.8 to 247.7 ng g<sup>-1</sup> (dry weight [dw]) basis). The PAH inputs to the sediments have remained constant during the last century and agree with the results obtained for the surface sediments. Diagnostic ratios indicated that the PAHs in the CAA mainly originate from natural petrogenic sources, with some pyrogenic sources. Temporal trends did not indicate major source shifts and largely indicated petrogenic inputs. Overall, the sediments retrieved from the CAA have low PAH concentrations that are mainly natural.</p>


2012 ◽  
Vol 9 (12) ◽  
pp. 17401-17435 ◽  
Author(s):  
E. Ortega-Retuerta ◽  
F. Joux ◽  
W. H. Jeffrey ◽  
J.-F. Ghiglione

Abstract. We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea, Canadian Arctic Ocean, with a particular focus on free-living vs. particle-attached communities. Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between particle-attached (PA) and free-living (FL) bacterial communities in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (proxy of DOC and CDOM), suspended particles, amino acids and chlorophyll a. 16S rRNA genes pyrosequencing of selected samples confirmed these significant differences from river to sea and also between PA and FL fractions only in open sea samples, and PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, the coast and river samples, both PA and FL fractions, were dominated by Betaproteobacteria, Alphaproteobacteria and Actinobacteria. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a~basis to predict further changes in bacterial communities should climate change lead to further increases in river discharge and related particles load.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zichao Deng ◽  
Shouchang Chen ◽  
Ping Zhang ◽  
Xu Zhang ◽  
Jonathan M. Adams ◽  
...  

In the context of global warming, changes in phytoplankton-associated bacterial communities have the potential to change biogeochemical cycling and food webs in marine ecosystems. Skeletonema is a cosmopolitan diatom genus in coastal waters worldwide. Here, we grew a Skeletonema strain with its native bacterial assemblage at different temperatures and examined cell concentrations of Skeletonema sp. and free-living bacteria, dissolved organic carbon (DOC) concentrations of cultures, and the community structure of both free-living and attached bacteria at different culture stages. The results showed that elevated temperature increased the specific growth rates of both Skeletonema and free-living bacteria. Different growth stages had a more pronounced effect on community structure compared with temperatures and different physical states of bacteria. The effects of temperature on the structure of the free-living bacterial community were more pronounced compared with diatom-attached bacteria. Carbon metabolism genes and those for some specific amino acid pathways were found to be positively correlated with elevated temperature, which may have profound implications on the oceanic carbon cycle and the marine microbial loop. Network analysis revealed evidence of enhanced cooperation with an increase in positive interactions among different bacteria at elevated temperature. This may help the whole community to overcome the stress of elevated temperature. We speculate that different bacterial species may build more integrated networks with a modified functional profile of the whole community to cope with elevated temperature. This study contributes to an improved understanding of the response of diatom-associated bacterial communities to elevated temperature.


2021 ◽  
Vol 4 ◽  
Author(s):  
E. Gozde Ozbayram ◽  
Latife Koker ◽  
Reyhan Akçaalan ◽  
Fatih Aydın ◽  
Meriç Albay

Lake Iznik is one of the largest lake of Turkey covering 308 km2 surface area with 65 m max. depth. The lake has alkaline characteristics (Akcaalan et al. 2014). It is a mesotrophic lake that becomes stratified between June-September and well mixed between October-April. Although there are almost 200 lakes in Turkey, there is very little published research focused on the bacterial diversity structures (Ozbayram et al. 2020.) The specific objective of this study was to evaluate the bacterial community profile in the surface water and sediment of the alkaline lake during the winter turnover. For this purpose, the samples were collected from 6 stations (5 on the shore and 1 in the middle of the lake) in February 2020 when the lake was completely mixed. In addition to the surface water and sediment samples, a sample was also collected from the depth of 40 m from the station located in the mid-lake. The water samples were filtered from a 0.22 µm filter and the sediment samples were taken into sterile plastic containers. The total DNAs were extracted using the NucleoSpin® Soil Kit (Macherey-Nagel, Germany) following the manufacturer’s instructions. Bacterial community profiles of the samples were analyzed by 16S rRNA gene-targeted sequencing using Illumina® MiSeq™. Physicochemical parameters were measured as explained by Ozbayram et al. 2020. The pH was between 8.29-8.67 and the Electrical Conductivity (EC) was in the range of 734-996 µS/cm (Suppl. material 1 -Table S1). Whereas the Dissolved Oxygen (DO) levels were measured as 10.12-11.65 mg/L in the surface waters, it was 9.72 mg/L in the 40 m. Among all samples, the highest value of the Shannon and Pielou's evenness indices were calculated for the surface water sample collected from station 2 indicated a more evenly distributed and diverse bacterial community (Suppl. material 1-Table S2). Bacterial diversity patterns of the samples were presented at the phylum level in Figure 1. In compliance with the literature on freshwaters (Zhang et al. 2014), the community was dominated by Proteobacteria species, and higher abundances were determined in the sediment samples (ranged 40.4-50.0 %). Especially, Gammaproteobacteria, Deltaproteobacteria were the major classes of this phylum in the sediment. On the other hand, the composition of bacterial communities in water samples showed a difference in which Actinobacteria and Bacteroidetes (in particular, the order: Flavobacteriales) were also predominated the communities. However, the community profile slightly differed with depth (station 6). At the genus level, most of the reads were not assigned any genera. Ilumatobacter, Fluviicola, and Flavobacterium were represented 3.4-7.1% of the bacterial community of water samples. Fig. 1 Overall, due to the complete mixing conditions in the lake, there was a homogenization of the bacterial communities and the diversity patterns were quite similar in the water samples. In further studies, samples will be collected during the stratification and the community structures will be compared.


2021 ◽  
Author(s):  
Anne Corminboeuf ◽  
Jean-Carlos Montero-Serrano ◽  
Richard St-Louis

<p>The concentrations of 23 polycyclic aromatic hydrocarbons (PAHs; 16 parent and 7 alkylated PAHs) in 113 surface marine sediment samples, 13 on-land sediment samples and 8 subsampled push cores retrieved from the Canadian Arctic Archipelago (CAA) were calculated. PAHs were extracted via accelerated solvent extraction (ASE) and quantified via gas chromatography-mass spectrometry (GC-MS). The sums of the concentrations 16 PAHs in the surface sediments ranged from 7.8 to 247.7 ng g<sup>-1</sup> (dry weight [dw]) basis). The PAH inputs to the sediments have remained constant during the last century and agree with the results obtained for the surface sediments. Diagnostic ratios indicated that the PAHs in the CAA mainly originate from natural petrogenic sources, with some pyrogenic sources. Temporal trends did not indicate major source shifts and largely indicated petrogenic inputs. Overall, the sediments retrieved from the CAA have low PAH concentrations that are mainly natural.</p>


2013 ◽  
Vol 10 (4) ◽  
pp. 2747-2759 ◽  
Author(s):  
E. Ortega-Retuerta ◽  
F. Joux ◽  
W. H. Jeffrey ◽  
J. F. Ghiglione

Abstract. We explored the patterns of total and active bacterial community structure in a gradient covering surface waters from the Mackenzie River to the coastal Beaufort Sea in the Canadian Arctic Ocean, with a particular focus on free-living (FL) vs. particle-attached (PA) communities. Capillary electrophoresis–single-strand conformation polymorphism (CE-SSCP) showed significant differences when comparing river, coast and open sea bacterial community structures. In contrast to the river and coastal waters, total (16S rDNA-based) and active (16S rRNA-based) communities in the open sea samples were not significantly different, suggesting that most present bacterial groups were equally active in this area. Additionally, we observed significant differences between PA and FL bacterial community structure in the open sea, but similar structure in the two fractions for coastal and river samples. Direct multivariate statistical analyses showed that total community structure was mainly driven by salinity (a proxy of dissolved organic carbon and chromophoric dissolved organic matter), suspended particles, amino acids and chlorophyll a. Pyrosequencing of 16S rRNA genes from selected samples confirmed significant differences between river, coastal and sea samples. The PA fraction was only different (15.7% similarity) from the FL one in the open sea sample. Furthermore, PA samples generally showed higher diversity (Shannon, Simpson and Chao indices) than FL samples. At the class level, Opitutae was most abundant in the PA fraction of the sea sample, followed by Flavobacteria and Gammaproteobacteria, while the FL sea sample was dominated by Alphaproteobacteria. Finally, for the coast and river samples and both PA and FL fractions, Betaproteobacteria, Alphaproteobacteria and Actinobacteria were dominant. These results highlight the coexistence of particle specialists and generalists and the role of particle quality in structuring bacterial communities in the area. These results may also serve as a basis to predict further changes in bacterial communities should climate change lead to further increases in river discharge and related particle loads.


2021 ◽  
Author(s):  
Patrick R Secor ◽  
Lia A Michaels ◽  
DeAnna C Bublitz ◽  
Laura K Jennings ◽  
Pradeep K Singh

Bacteria causing chronic infections are often found in cell aggregates suspended in polymer secretions, and aggregation may be a factor in infection persistence. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and polymers. Here we investigated whether the depletion mechanism can actuate the aggregating effects of  P. aeruginosa  exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found cells overexpressing the exopolysaccharides Pel and Psl, but not alginate remained aggregated after depletion-mediating conditions were reversed. In co-culture, d epletion aggregation had contrasting effects on  P. aeruginosa’s  interactions with coccus- and rod-shaped bacteria.  Depletion caused  S. aureus (cocci) and  P. aeruginosa  (rods) to segregate from each other,  S. aureus  to resist secreted  P. aeruginosa  antimicrobial factors, and the species to co-exist. In contrast ,  depletion aggregation caused  P. aeruginosa  and  Burkholderia   sp.  to intermix, enhancing  type VI secretion  inhibition of  Burkholderia  by  P. aeruginosa , leading to  P. aeruginosa  dominance . These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can actuate the aggregating effects of self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.


1999 ◽  
Vol 65 (7) ◽  
pp. 3192-3204 ◽  
Author(s):  
Byron C. Crump ◽  
E. Virginia Armbrust ◽  
John A. Baross

ABSTRACT The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the classProteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genusCytophaga or of the α, γ, or δ subclass of the classProteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (β-proteobacteria, gram-positive bacteria, andVerrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and α-proteobacteria [SAR11 andRhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.


Sign in / Sign up

Export Citation Format

Share Document