scholarly journals Deep Mineral Exploration of the Jinchuan Cu–Ni Sulfide Deposit Based on Aeromagnetic, Gravity, and CSAMT Methods

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 168 ◽  
Author(s):  
Jianmin Zhang ◽  
Zhaofa Zeng ◽  
Xueyu Zhao ◽  
Jing Li ◽  
Yue Zhou ◽  
...  

The exploration of deep mineral resources is an important prerequisite for meeting the continuous demand of resources. The geophysical method is one of the most effective means of exploring the deep mineral resources with a large depth and a high resolution. Based on the study of the geological background, petrophysical properties, and aeromagnetic anomaly characteristics of the Jinchuan Cu–Ni sulfide deposit, which is famous throughout the world, this paper uses the widely used gravity, aeromagnetic, and CSAMT (controlled source audio-frequency magnetotellurics) methods with a complementary resolution to reveal the favorable prospecting position. In order to obtain better inversion results, the SL0 norm tight support focusing regularization inversion method is introduced to process the section gravity and aeromagnetic data of the mining area. By combining the results with CSAMT, it is found that the medium-low resistivity, high density, and the high magnetic anomaly areas near the structural belt can nicely correspond with the known ore-bearing rock masses in the mining area. At the same time, according to the geophysical exploration model and geological and physical property data, four favorable ore-forming prospect areas are delineated in the deep part of the known mining area.

Geosphere ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 456-471 ◽  
Author(s):  
Kevin M. Denton ◽  
David A. Ponce ◽  
Jared R. Peacock ◽  
David M. Miller

Abstract Mountain Pass, California (USA), located in the eastern Mojave Desert, hosts one of the world’s richest rare earth element (REE) deposits. The REE-rich terrane occurs in a 2.5-km-wide, northwest-trending belt of Mesoproterozoic (1.4 Ga) stocks and dikes, which intrude a larger Paleoproterozoic (1.7 Ga) metamorphic block that extends ∼10 km southward from Clark Mountain to the eastern Mescal Range. To characterize the REE terrane, gravity, magnetic, magnetotelluric, and whole-rock physical property data were analyzed. Geophysical data reveal that the Mountain Pass carbonatite body is associated with an ∼5 mGal local gravity high that is superimposed on a gravity terrace (∼4 km wide) caused by granitic Paleoproterozoic host rocks. Physical rock property data indicate that the Mountain Pass REE suite is essentially nonmagnetic at the surface with a magnetic susceptibility of 2.0 × 10−3 SI (n = 57), and lower-than-expected magnetizations may be the result of alteration. However, aeromagnetic data indicate that the intrusive suite occurs along the eastern edge of a distinct northwest-trending aeromagnetic high along the eastern Mescal Range. The source of this magnetic anomaly is ∼1.5–2 km below the surface and coincides with an electrical conductivity zone that is several orders of magnitude more conductive than the surrounding rock. The source of the magnetic anomaly is likely a moderately magnetic pluton. Combined geophysical data and models suggest that the carbonatite and its associated REE-enriched ultrapotassic suite were preferentially emplaced along a northwest-trending zone of weakness, which has potential implications for regional mineral exploration.


2012 ◽  
Vol 44 (3) ◽  
pp. 441-453 ◽  
Author(s):  
Denis A. Hughes ◽  
Evison Kapangaziwiri ◽  
Jane Tanner

The most appropriate scale to use for hydrological modelling depends on the model structure, the purpose of the results and the resolution of available data used to quantify parameter values and provide the climatic forcing. There is little consensus amongst the community of model users on the appropriate model complexity and number of model parameters that are needed for satisfactory simulations. These issues are not independent of modelling scale, the methods used to quantify parameter values, nor the purpose of use of the simulations. This paper reports on an investigation of spatial scale effects on the application of an approach to quantify the parameter values (with uncertainty) of a rainfall-runoff model with a relatively large number of parameters. The quantification approach uses estimation equations based on physical property data and is applicable to gauged and ungauged basins. Within South Africa the physical property data are available at a finer spatial resolution than is typically used for hydrological modelling. The results suggest that reducing the model spatial scale offers some advantages. Potential disadvantages are related to the need for some subjective interpretation of the available physical property data, as well as inconsistencies in some of the parameter estimation equations.


1962 ◽  
Vol 6 ◽  
pp. 74-84
Author(s):  
John V. Gilfrich

AbstractX-ray diffraction studies were made on the Ti–Ni system around the stoichiometric composition of the intermetallic compound TiNi to clarify some confusion which has existed about the phase diagram in this region, and to explain some anomalies in the physical properties of this material. Wrought and cast samples were examined at room temperature both before and after heat treatment and at temperatures both above and below ambient. The compound TiNi does exist at room temperature. The phase purity of the particular sample was found to be greatly affected by such factors as minor variations in composition, heat treatment, and method of sample preparation. Some confirming metallographlc and physical property data will also be presented.


1959 ◽  
Vol 32 (2) ◽  
pp. 519-526
Author(s):  
V. I. Alekseenko ◽  
L. A. Bogoslavskaya ◽  
I. U. Mishustin

Abstract 1. Relationships were established between the bond strength of joints made from rubber with fabric, leather, or rubber with physical property data from the films made from the mixtures of the adhesive with the rubber from which the vulcanizates were made. 2. The effect of the chemical structure of the adhesive on the bond strength is established. 3. Nairit-NT, mainly the trans isomer of poly-1,4-chloroprene and chemically closely related to gutta percha (trans polyisoprene) gives a good adhesive cement for bonding rubber to fabric, leather, or rubber. It makes chemical surface treatment unnecessary. This new adhesive gives good bonding to SKS-30. Similar results were obtained with cement made from gutta percha; however, bonding strength to SKN-40 rubber was much higher.


1987 ◽  
Vol 1987 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Mervin F. Fingas ◽  
Mark A. Bobra ◽  
Ronald K. Velicogna

ABSTRACT We have reviewed the laboratory testing of the chemical and natural dispersion of oil, noting the weaknesses of the Mackay test and comparing it to other methods. Results of both chemical and natural dispersion tests show that anomalous test results are produced in the Mackay apparatus at 0° C. This is attributed to preferential viscous shearing when the oil viscosity is 30 to 200 centistokes (cs). A new test uses a small swirling flask. Dispersant effectiveness results for ten oils from the Mackay, Labofina, and swirling flask tests were compared and the correlation found to be low. Results from the new swirling flask test correlate well with physical property data, especially viscosity. Each laboratory test produces somewhat unique results, and no way has yet been found to determine which test most accurately represents reality.


2020 ◽  
Author(s):  
Alba Gil ◽  
Alireza Malehmir ◽  
Stefan Buske ◽  
Juan Alcalde ◽  
Puy Ayarza ◽  
...  

<p>Mineral resources are used in large quantities than ever before because they are fundamental to our modern society. To this front and facing an up-scaling challenge, the EIT Raw-Materials funded project SIT4ME (Seismic Imaging Techniques for Mineral Exploration) was launched involving several European institutions. As part of the project, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area at the Bergslagen mineral district of Sweden, which hosts one of the largest volcanic-hosted massive sulphide (VMS) deposits in the country.</p><p>In November 2018, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area, in a joint collaborative approach among Swedish, Spanish and German partners. A combination of sparse 3D grid and dense 2D profiles in an area of approximately 6 km<sup>2 </sup>was acquired using a 32t seismic vibrator (10-150 Hz) of TU Bergakademie Freiberg, enabling reasonable pseudo-3D sub-surface illumination. For the data acquisition, a total of approximately 1300 receiver positions (10-20 m apart), using different recorders, and 950 source positions were surveyed. All receivers were active during the data acquisition allowing a combination of 2D and semi-3D data to be obtained for various imaging and comparative studies. The main objective of the study, apart from its commercial-realization approach, was also to provide information useful for deep-targeting and structural imaging in this complex geological setting. The main massive-sulphide bearing horizon, Zinkgruvan formation, is strongly reflective as correlated with the existing boreholes in the mine. Careful analysis of the seismic sections suggests a dominant northeast-dipping structure, consistent with the general plunge of the main Zinkgruvan fold that has been suggested in the area.</p><p>Acknowledgements: EIT-RawMaterials is gratefully thanked for funding this up-scaling project 17024.</p>


Sign in / Sign up

Export Citation Format

Share Document