scholarly journals The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM

Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 504
Author(s):  
Xu Tang ◽  
Qiu-Li Li ◽  
Bin Zhang ◽  
Peng Wang ◽  
Li-Xin Gu ◽  
...  

Monazite ((Ce, La, Nd, Th)PO4) is one of the widely used minerals for U–Th–Pb dating in geochronology. To better understand the possible effects of radiogenic Pb on the in situ dating method, a natural monazite U–Th–Pb standard sample (RW-1) was chemically and structurally characterized down to atomic scales by using the combination of Raman spectrum (RM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The experimental results revealed that radiogenic Pb exists as Pb2+ and substitutes for the Ce site in the monazite crystal lattice. Moreover, TEM imaging demonstrated that monazite is well crystalline revealed by an atomic structure in most areas except for a few tiny defects, which are likely attributed to alpha self-healing from an electronic energy loss of α particles. The characterization of the chemical state and occupancy of radiogenic Pb, and the distribution of Pb and Th in monazite at the nanoscale and atomic scale could provide insight for us to understand the mechanisms of the nanogeochronology.

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1096
Author(s):  
Ligang Luo ◽  
Xiao Han ◽  
Qin Zeng

A series of Ni-Fe/SBA-15 catalysts was prepared and tested for the catalytic hydrogenation of levulinic acid to γ-valerolactone, adopting methanol as the only hydrogen donor, and investigating the synergism between Fe and Ni, both supported on SBA-15, towards this reaction. The characterization of the synthesized catalysts was carried out by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), H2-TPD (hydrogen temperature-programmed desorption), XPS (X-ray photoelectron spectroscopy), and in situ FT-IR (Fourier transform–infrared spectroscopy) techniques. H2-TPD and XPS results have shown that electron transfer occurs from Fe to Ni, which is helpful both for the activation of the C=O bond and for the dissociative activation of H2 molecules, also in agreement with the results of the in situ FT-IR spectroscopy. The effect of temperature and reaction time on γ-valerolactone production was also investigated, identifying the best reaction conditions at 200 °C and 180 min, allowing for the complete conversion of levulinic acid and the complete selectivity to γ-valerolactone. Moreover, methanol was identified as an efficient hydrogen donor, if used in combination with the Ni-Fe/SBA-15 catalyst. The obtained results are promising, especially if compared with those obtained with the traditional and more expensive molecular hydrogen and noble-based catalysts.


2000 ◽  
Vol 72 (1-2) ◽  
pp. 209-219 ◽  
Author(s):  
Z. L. Wang ◽  
P. Poncharal ◽  
W. A. de Heer

Property characterization of nanomaterials is challenged by the small size of the structure because of the difficulties in manipulation. Here we demonstrate a novel approach that allows a direct measurement of the mechanical and electrical properties of individual nanotube-like structures by in situ transmission electron microscopy (TEM). The technique is powerful in a way that it can be directly correlated to the atomic-scale microstructure of the carbon nanotube with its physical properties, thus providing a complete characterization of the nanotube. Applications of the technique will be demonstrated in measurements of the mechanical properties, the electron field emission, and the ballistic quantum conductance of individual carbon nanotubes. A nanobalance technique is demonstrated that can be applied to measure the mass of a single tiny particle as light as 22 fg (1 f = 10-15 ).


2006 ◽  
Vol 21 (1) ◽  
pp. 112-118 ◽  
Author(s):  
A. Vadivel Murugan ◽  
Mathieu Quintin ◽  
Marie-Helene Delville ◽  
Guy Campet ◽  
Annamraju Kasi Viswanath ◽  
...  

Here we demonstrate the synthesis of a new type of layered poly(3,4-ethylenedioxy- thiophene) (PEDOT)/MoS2 nanocomposite via flocculation of delaminated MoS2 with subsequent in situ oxidative polymerization of 3,4-ethylenedioxythiophene. The resulting nanocomposite was characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction, x-ray photoelectron spectroscopy, thermal analysis, transmission electron microscopy, and four-probe electrical conductivity measurements with respect to temperature. X-ray diffraction results indicated that the exfoliated MoS2 and PEDOT are restacked to produce a novel nanoscale composite material containing alternate nanoribbons of PEDOT in between MoS2 with a basal distance of ∼1.38 nm. The nanocomposite, which could be used as a cathode material for small power rechargeable lithium batteries, has also been demonstrated by the electrochemical insertion of lithium into the PEDOT/MoS2 nanocomposite, where a significant enhancement in the discharge capacity is observed, compared to that of respective pristine molybdenum disulfide.


2020 ◽  
Author(s):  
Xu Tang ◽  
Qiu-li Li ◽  
Lin-xin Gu

<p>Monazite((Ce,Y,La,Th)PO<sub>4</sub>) is an important phosphate mineral and is one of the widely used minerals for U-Th-Pb dating in geochronology. In this study, we have examined the crystallinity, the valence and coordination of radiogenic Pb in a natural RW-1 monazite standard (ThO<sub>2</sub> up to13.5 wt% and Pb up to ~5000 ppm) with a <sup>207</sup>Pb/<sup>235</sup>U age of 904.15 ± 0.26 Ma from a Norwegian pegmatite by using laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy (TEM). The Raman spectrum analysis revealed that this monazite is well crystalline and is not damaged by α-particles. The results of XPS and TEM suggest that the radiogenic Pb produced by the α-decay of U and Th is divalent and radiogenic Pb atom substitutes the Ce-site within the monazite crystal lattice. The qualitative analyses conducted on the HAADF-STEM data reveal heterogeneous distribution of radiogenic Pb within the monazite crystal lattice. This is the first work on the determination of the oxidation state, the atomic location and distribution of radiogenic Pb in a natural monazite (CePO<sub>4</sub>). The deeply study of radiogenic Pb in monazite at the nanoscale and atomic scale provides a good insight for us to understand the mechanisms of nano-isotopic mobility and the nano-geochronology  that has been poorly understood so far.</p>


Microscopy ◽  
2019 ◽  
Author(s):  
He Zheng ◽  
Fan Cao ◽  
Ligong Zhao ◽  
Renhui Jiang ◽  
Peili Zhao ◽  
...  

Abstract In situ transmission electron microscopy has achieved remarkable advances for atomic-scale dynamic analysis in low-dimensional materials and become an indispensable tool in view of linking a material’s microstructure to its properties and performance. Here, accompanied with some cutting-edge researches worldwide, we briefly review our recent progress in dynamic atomistic characterization of low-dimensional materials under external mechanical stress, thermal excitations and electrical field. The electron beam irradiation effects in metals and metal oxides are also discussed. We conclude by discussing the likely future developments in this area.


1999 ◽  
Vol 589 ◽  
Author(s):  
Z.L. Wang ◽  
P. Poncharal ◽  
W.A. De Heer ◽  
R.P. Gao

AbstractProperty characterization of nanomaterials is challenged by the small size of the structure because of the difficulties in manipulation. Here we demonstrate a novel approach that allows a direct measurement of the mechancial and electrical properties of individual nanotube-like structures by in-situ transmission electron microscopy (TEM). The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties, providing an one-to-one correspondence in structure-property characterization. Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes. A nanobalance technique is demonstrated that can be applied to measure the mass of a single tiny particle as light as 22 fg (1 f= 10−15).


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document