scholarly journals Particle-Crushing Characteristics and Acoustic-Emission Patterns of Crushing Gangue Backfilling Material under Cyclic Loading

Minerals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 244 ◽  
Author(s):  
Junmeng Li ◽  
Yanli Huang ◽  
Zhongwei Chen ◽  
Meng Li ◽  
Ming Qiao ◽  
...  
Author(s):  
Zipeng Han ◽  
Gregory N. Morscher ◽  
Emmanuel Maillet ◽  
Manigandan Kannan ◽  
Sung R. Choi ◽  
...  

Electrical resistance (ER) is a relatively new approach for real-time monitoring and evaluating damage in SiC/SiC composites for a variety of loading conditions. In this study, ER of woven silicon carbide fiber-reinforced silicon carbide composite systems in their pristine and impacted state were measured under cyclic loading conditions at room and high temperature (1200C). In addition, modal acoustic emission (AE) was also monitored, which can reveal the occasion of matrix cracks and fiber. ER measurement and AE technique are shown in this study to be useful methods to monitor damage and indicate the failure under cyclic loading. Based on the slope of the ER evolution, an initial attempt has been made to develop a method allowing a critical damage phase to be identified. While the physical meaning of the critical point is not yet clear, it has the potential to allow the failure to be indicated at its early stage.


2021 ◽  
Vol 79 (1) ◽  
pp. 61-77
Author(s):  
A Jayababu ◽  
V Arumugam ◽  
B Rajesh ◽  
C Suresh Kumar

This work focuses on the experimental investigation of indentation damage resistance in different stacking sequences of glass/epoxy composite laminates under cyclic loading on normal (0°) and oblique (20°) planes. The stacking sequence, such as unidirectional [0]12, angle ply [±45]6S, and cross ply [0/90]6S, were subjected to cyclic indentation loading and monitoring by acoustic emission testing (AE). The laminates were loaded at the center using a hemispherical steel indenter with a 12.7 mm diameter. The cyclic indentation loading was performed at displacements from 0.5 to 3 mm with an increment of 0.5 mm in each cycle. Subsequently, the residual compressive strength of the post-indented laminates was estimated by testing them under in-plane loading, once again with AE monitoring. Mechanical responses such as peak load, absorbed energy, stiffness, residual dent, and damage area were used for the quantification of the indentation-induced damage. The normalized AE cumulative counts, AE energy, and Felicity ratio were used for monitoring the damage initiation and propagation. Moreover, the discrete wavelet analysis of acoustic emission signals and fast Fourier transform enabled the calculation of the peak frequency content of each damage mechanism. The results showed that the cross-ply laminates had superior indentation damage resistance over angle ply and unidirectional (UD) laminates under normal and oblique planes of cyclic loading. However, the conclusion from the results was that UD laminates showed a better reduction in residual compressive strength than the other laminate configurations.


2019 ◽  
Vol 343 ◽  
pp. 159-169 ◽  
Author(s):  
Junmeng Li ◽  
Yanli Huang ◽  
Zhongwei Chen ◽  
Jixiong Zhang ◽  
Haiqiang Jiang ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 341
Author(s):  
Marc Thiele ◽  
Stephan Pirskawetz

The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods.


2018 ◽  
Vol 176 (1) ◽  
pp. 265-277 ◽  
Author(s):  
Deyi Jiang ◽  
Kainan Xie ◽  
Jie Chen ◽  
Shuilin Zhang ◽  
William Ngaha Tiedeu ◽  
...  

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986102
Author(s):  
Dongxu Liang ◽  
Nong Zhang ◽  
Lixiang Xie ◽  
Guangming Zhao ◽  
Deyu Qian

It is of significance to study the damage and destruction of rock under cyclic loading in geotechnical engineering. We determined the trends in damage evolution of sandstone under constant-amplitude and tiered cyclic loading and unloading under uniaxial compression. The results of the study show that (1) the variation of acoustic-emission events was consistent with the stress curves and 89% of all acoustic-emission events occurred during the cycling stages. The observed Kaiser effect was more notable in tiered cycling. (2) The damage variable increased sharply in the cycling stages and its increment was 0.07 higher for tiered cycling than constant-amplitude cycling. Sandstone exhibited greater damage under tiered cyclic loading and unloading. (3) Equations for the evolution of the damage variable under the two cycle modes were obtained by fitting of experimental data. (4) The fractal dimensions of the constant-amplitude cycle were larger than those of the tiered cycle. The process of damage and destruction presents a trend of reducing fractal dimension. The damage accumulation of sandstone under tiered cycling was faster than under constant-amplitude cycling. These results provide references for damage and early warning of rock under both constant-amplitude and tiered cyclic loading and unloading.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Huiqiang Duan ◽  
Depeng Ma

The damage and failure state of the loaded coal and rock masses is indirectly reflected by its acoustic emission (AE) characteristics. Therefore, it is of great significance to study the AE evolution of loaded coal and rock masses for the evaluation of damage degree and prediction of collapse. The paper mainly represents a numerical simulation investigation of the AE characteristics of coal specimen subjected to cyclic loading under three confining pressures, loading-unloading rates, and valley stresses. From the numerical simulation tests, the following conclusions can be drawn: (1) The final cycle number of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure, followed the valley stress. With the increase in confining pressure or valley stress, the cycle number tends to increase. However, the loading-unloading rate has a little influence on it. (2) The AE counts of coal specimen subjected to cyclic loading are greatly influenced by the confining pressure and the valley stress. With the increase in the confining pressure, the cumulative AE counts at the 1st cycle tend to increase but decrease at a cycle before failure; with the decrease in the valley stress, the cumulative AE counts per cycle increase in the relatively quiet phase. However, the loading-unloading rate has a little influence on it. (3) The failure mode of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure. Under the uniaxial stress state, there is an inclined main fractured plane in the coal specimen, under the confining pressures of 5 and 10 MPa, the coal specimen represents dispersion failure. The loading-unloading rate and valley stress have little influence on it. (4) The AE ratio is proposed, and its evolution can better reflect the different stages of coal specimen failure under cyclic loading. (5) The influence of confining pressure on the broken degree of coal specimen subjected to cyclic loading is analyzed, and the higher the confining pressure, the more broken the failed coal specimen.


1985 ◽  
Vol 17 (12) ◽  
pp. 1671-1675
Author(s):  
V. T. Troshchenko ◽  
V. A. Strizhalo ◽  
V. V. Pokrovskii ◽  
S. I. Likhatskii ◽  
V. G. Kaplunenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document