scholarly journals Selective Separation of Hematite by a Synthesized Depressant in Various Scales of Anionic Reverse Flotation

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 124 ◽  
Author(s):  
Arash Tohry ◽  
Reza Dehghan ◽  
Saeed Chehreh Chelgani ◽  
Jan Rosenkranz ◽  
Omid Rahmani

Demand for high-quality iron concentrate is significantly increasing around the world. Thus, the development of the techniques for a selective separation and rejection of typical associated minerals in the iron oxide ores, such as phosphorous minerals (mainly apatite group), is a high priority. Reverse anionic flotation by using sodium silicate (SS) as an iron oxide depressant is one of the techniques for iron ore processing. This investigation is going to present a synthesized reagent “sodium co-silicate (SCS)” for hematite depression through a reverse anionic flotation. The main hypothesis is the selective depression of hematite and, simultaneously, modification of the pulp pH by SCS. Various flotation experiments, including micro-flotation, and batch flotation of laboratory and industrial scales, were conducted in order to compare the depression selectivity of SS versus SCS. Outcomes of flotation tests at the different flotation scales demonstrated that hematite depression by SCS is around 3.3% higher than by SS. Based on flotation experiment outcomes, it was concluded that SCS can modify the pH of the process at ~9.5, and the plant reagents (including NaOH, Na2CO3, and SS gel) can be replaced by just SCS, which can also lead to a higher efficiency in the plant.

2020 ◽  
Vol 980 ◽  
pp. 359-367
Author(s):  
Zhong Hang Cheng ◽  
Dian Bing Zhu ◽  
Shu Juan Dai ◽  
Ahmed Sobhy

The mineral processing technology of Anshan-type iron ores has been developed in a rapid speed in recent years, and the combined flowsheet at the core of anionic reverse flotation has become a mainstream in the beneficiation of Anshan-type iron ores in china. With the successful application of this combined flowsheet, some obvious problems are also emerging. Such as high requirement of pulp temperature, complex reagent system, high cost of reagent consumption and so on. In view of this,we have carried out an experimental study on the separation of Anshan type iron ore by cationic reverse flotation . A new collector (named KBD) which is mixed amines have been developed . On this basis, the actual mineral separation experiment is carried out in the laboratory.With KBD as the collector,and starch and sodium hexametaphoshate as the depressant, has resulted in an iron concentrate of 68.16% and recovery rate of 89.71%. The determination of the electrokinetic potential and the infra-red spectroscopic analysis show that KBD can effectively and priorly adsorbed to the surface of quartz, and has greatly change the elecrtokinetic potential of quartz.The interaction of the depressing agent has increased the differences of the floatabilities in quartz and hermitite and changed the surface electric property so that the effective separation has been realized.


2011 ◽  
Vol 304 ◽  
pp. 387-390 ◽  
Author(s):  
Wei Zhi Wang ◽  
Jin Rui Zhang ◽  
Chun Guang Yang

An iron ore contains specularite and hematite which are its main iron minerals. And its main gangue minerals are specularite, part of the clay material and a small amount of quartz.Tests are made on the ore by adopting processes including gravity separation, high intensity magnetic separation, high intensity magnetic-gravity separation and high intensity magnetic - reverse flotation. The test results show that the separation process of high intensity magnetic-reverse flotation can obtain an iron concentrate grading about 66.62% at a recovery of 58.38% from an iron ore assaying around 35.00% iron, rather good metallurgical performances.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2177-2188
Author(s):  
Wen Li Jiang ◽  
Yi Min Zhang ◽  
Guang Quan Liang ◽  
Xi Wen Xia

In order to enhance the quality of iron concentrate from magnetic separation, reverse-flotation technology is often applied in iron ore dressing plant. However, this technology has disadvantages in operating cost, energy consumption and environmental protection (Zhao Chunfu, Wu Jianghua &Wang Hui ,2005). Developing innovative equipment to process magnetite ore more-effectively is a way to get rid of these disadvantages of reverse flotation and improve the quality of iron concentrate. This paper describes the development of Complex Flashing-Field Magnetic Cleaner, a new kind of equipment based on the principle of combination of separation in magnetic field and separation in gravity field (Hao Shuhua & Jiang Wenli,2002). This innovative equipment possesses a tailor-made magnetic system and has the characteristics of a magnetic field which can strengthen the formation of magnetic agglomerations and the dispersion of gangue minerals to improve the quality of separation. The automatic control system developed specifically for this equipment can further increase the accuracy of separation and stabilize the process. Test results showed that this equipment is reliable in operation, economically beneficial and it has large potential of application.


2012 ◽  
Vol 454 ◽  
pp. 292-298
Author(s):  
An Lin Shao

There are nearly 500 million tons of hematite ores carbonate-containing in Donganshang, China. However, the flotation flowsheet previously of in that area was seriously affected by the siderite. Therefore, many ores could not be processed by ordinary methods. In this study, mixed magnetic concentrate in scene was beneficiated by stepped-flotation, in which siderite was separated in first direct flotation step to eliminate its negative influence on hematite flotation, and then the high quality hematite concentrate could be obtained by second reverse flotation step. When the feed was mixed magnetic concentrate in scene with total iron grade of 42.84% and siderite content of 4.04%, an iron concentrate with iron grade of 67.84% and iron recovery of 69.47% was obtained in closed circuit of stepped-flotation.


2010 ◽  
Vol 92 ◽  
pp. 103-109
Author(s):  
Wan Zhong Yin ◽  
Yue Xin Han ◽  
Feng Xie

With the development of mining operation, the content of iron carbonate typically siderite increases evidently in the iron ore produced in Dong Anshan floatation plant, China. The presence of siderite significantly decreases the iron grade in the concentrate produced by the current reverse anionic flotation process. The study shows that the floatability of hematite, siderite and quartz differs with an increase of pH by using the combination of starch and CaCl2 as depressant. A two-step flotation process has been developed to treat Dong Anshan iron ore by which siderite was removed in the first step floatation and in the second step, reverse anionic flotation was used to produce high quality iron concentrate.


2012 ◽  
Vol 524-527 ◽  
pp. 1092-1096
Author(s):  
Jiang An Chen ◽  
Jun Liu ◽  
Jie Zeng

Anhui hematite contains 43.21% of iron and 30.11% of silicon; it belongs to high silica refractory hematite. In this paper, reverse-flotation process was adopted to deal with the ore; as a result, good indexes can be obtained, which the iron concentrate grade is 61.76 % with 83.06% recovery. Flotation process can be carried out at room temperature, in comparison with anionic reverse flotation process, cationic reverse flotation can reduce the cost of ore processing. study.


2011 ◽  
Vol 304 ◽  
pp. 391-394
Author(s):  
Wei Zhi Wang ◽  
Jin Rui Zhang ◽  
Chun Guang Yang

An iron ore contains specularite and hematite which are its main iron minerals and carbonates such as calcite which are its main gangue minerals. The ore is very apt to produce slime in the grinding process,leading to a deteriorated beneficiability. The rough iron concentrate can be obtained by using high gradient magnetic separator to discard tailings with the grinding fineness of 95% -0.074mm. Then the rough concentrate is treated by reverse flotation to produce a final concentrate with the operation recovery of 66.49% and the iron grade of 66.12%,and the total recovery of iron could reach58.70%.


2011 ◽  
Vol 189-193 ◽  
pp. 1722-1725 ◽  
Author(s):  
Jin Xia Zhang ◽  
Fu Sheng Niu ◽  
Shu Xian Liu ◽  
Yi Miao Nie

Based on the study on the characteristics of a limonite ore, research was made on single reverse flotation for Xinjiang limonite ore. The test results indicate that we can obtain an iron concentrate grading about 54.07% at a recovery of 62.65% from an iron ore assaying around 41.85% iron,rather good metallurgical performances.


Author(s):  
Unursaikhan B ◽  
Baasanjav D ◽  
Sugir-Erdene N ◽  
Orgilbayar B ◽  
Sukhbat S ◽  
...  

The iron ore sample is processed in laboratory conditions with methods of both dry and wet magnetic separation. The particle size of the processed sample was 1 mm electric power of dry magnetic separation 0.2A-0.6A, and the rotation number of the separation drum was chosen to be 32 per/min. The most suitable procedures to get standardized concentrate are optimized through considering the following facts that the duration of wet magnetic separation is 20, 30, 40, 50 minutes, classification yield is 43.50 %, 55.70%, 72.70%, 85.20% for 0.074 mm crushed particles, and the electric power is 1A-5A of the wet magnetic drum. As a result of this process, the initial Fe concentration of the primary ore has increased from 43.59% to 65.60% and the recovery arose to 96.93%. Therefore, the combination methods of dry and wet iron ore separation are applicable for processing of iron concentrate with higher pureness that meets the requirements of metallurgical industries. Чандмань-Уул ордын төмрийн хүдрийг хуурай соронзон болон нойтон соронзон аргаар баяжуулах технологийн судалгаа Хураангуй: Төмрийн хүдрийг лабораторийн нөхцөлд хуурай болон нойтон соронзон баяжуулалтын хосолсон аргаар баяжуулсан. Нойтон соронзон баяжуулалтын нунтаглалтын хугацаа 20, 30, 40, 50 мин, 0.074 мм-ийн ангилал харгалзан 43.5%, 55.7%,72.7%, 85.2%-тай байхад соронзон орны 1-5А гүйдлийн хүч зэргээс хамааруулан стандарт баяжмал гарган авах технологийн зохистой горимуудыг тогтоосон. Анхдагч хүдэр дэх төмрийн агуулга 43.59% байсан бол туршилт судалгааны үр дүнд төмрийн агуулга 65.60% болж 96.93%-ийн металл авалттай төмрийн баяжмал гарган авсан. Иймд хуурай, нойтон соронзон баяжуулалт хосолсон схемээр төмрийн хүдрийг баяжуулах нь цаашид металлургийн үйлдвэрийн шаардлага хангасан өндөр цэвэршилттэй төмрийн баяжмал гарган авах боломжтой гэж үзэв. Түлхүүр үг: Төмрийн хүдэр, хуурай соронзон баяжуулалт, нойтон соронзон баяжуулалт, төмрийн баяжмал


2014 ◽  
Vol 670-671 ◽  
pp. 283-289 ◽  
Author(s):  
Andrey N. Dmitriev ◽  
Oleg Yu. Sheshukov ◽  
Galina I. Gazaleeva ◽  
Yury A. Chesnokov ◽  
Evgeniy V. Bratygin ◽  
...  

The approach to solving the problem of processing iron ore raw materials of Tebinbulak titanomagnetite deposit (Uzbekistan) is offered. It can provide high-quality steel products. The two schemes of processing of Tebinbulak ore are shown. The choice between the proposed schemes of the Tebinbulak ore processing: variant of "blast furnace – converter" and variant of "metallization – electric smelting" should be made after thorough analysis based on many factors.


Sign in / Sign up

Export Citation Format

Share Document