scholarly journals Major and Trace Element Geochemistry of Dayakou Vanadium-Dominant Emerald from Malipo (Yunnan, China): Genetic Model and Geographic Origin Determination

Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 777
Author(s):  
Yuyu Zheng ◽  
Xiaoyan Yu ◽  
Hongshu Guo

Emerald from the deposit at Dayakou is classified as a vanadium-dominant emerald together with Lened, Muzo, Mohmand, and Eidsvoll emeralds. Although previous studies defined these V-dominant emeralds and traced the genesis of the Dayakou deposit, there has not been any systematic comparison or discrimination on V-dominant emeralds from these deposits. The origin of the parental fluid and the crystallization process of the Dayakou emerald remain controversial. In this study, both major and trace element signatures of 34 V-dominant samples from Dayakou are analyzed through electron microprobe analysis (EMPA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Dayakou emeralds are characterized by high ratios of V/Cr and the enrichment of Li, Cs, W, Sn, and As. These geochemical fingerprints indicate a parental fluid of an Early Cretaceous early-stage granitic fluid associated with Laojunshan granite. The considerable concentration variation of Rb, Cs, Ga and the presence of V-rich oxy-schorl-dravite inclusions in a color zoned sample suggest two generations of emerald precipitation. Thus, a more detailed idealized mineralization model for the Dayakou deposit is proposed. A series of plots, such as Rb vs. Cs, V vs. V/Cr, LILE vs. CTE, and Li vs. Sc, are constructed to discriminate the provenance of V-dominant emeralds.

Author(s):  
Wenqing Huang ◽  
Pei Ni ◽  
Ting Shui ◽  
Junyi Pan ◽  
Mingsen Fan ◽  
...  

Abstract Primary rubies in the Ailao Shan of Yunnan Province, China, are found in three layers of marble. However, the origin and source rocks of placer rubies in the Yuanjiang area remains unclear. Trace element geochemistry and inclusion mineralogy within these materials can provide information on their petrogenesis and original source. Zircon, rutile, mica group minerals, titanite, and apatite group minerals were the main solid inclusions identified within the placer Yuanjiang rubies, along with other mineral inclusions such as pyrite, pyrrhotite, plagioclase group minerals, and scapolite group minerals. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements showed that the placer rubies are characterized by average values of Mg (31 ppmw), Ti (97 ppmw), V (77 ppmw), Cr (3326 ppmw), Fe (71 ppmw), and Ga (66ppmw). A trace-element oxide diagram, Fe values (<350 ppmw), and the mineral inclusion assemblage suggest marble sources for the placer ruby. Therefore, the Yuanjiang rubies (both primary and placer) are metamorphic, and this fits well with the observations that skarn and related minerals are mostly absent in this deposit. Yuanjiang rubies can be readily separated from the high-iron rubies of different geological types by their Fe content (<1000 ppmw). The discriminators Mg, Ga, Cr, V, Fe, and Ti have potential in separating Yuanjiang rubies from some other marble-hosted deposits, such as Snezhnoe. Nevertheless, geographic origin determination remains a challenge when considering the similarities in compositional features between the Yuanjiang rubies and rubies from some other marble-hosted deposits worldwide (e.g., Luc Yen). The presence of kaolinite group minerals and clusters of euhedral, prismatic zircon crystals in ruby suggest a Yuanjiang origin.


2018 ◽  
Vol 82 (S1) ◽  
pp. S281-S306 ◽  
Author(s):  
Olga Y. Plotinskaya ◽  
Vera D. Abramova ◽  
Elena O. Groznova ◽  
Svetlana G. Tessalina ◽  
Reimar Seltmann ◽  
...  

ABSTRACTMineralogical, electron microprobe analysis and laser ablation-inductively coupled plasma-mass spectrometry data from molybdenite within two porphyry copper deposits (Kalinovskoe and Birgilda) of the Birgilda-Tomino ore cluster (South Urals) are presented.† The results provide evidence that molybdenites from these two sites have similar trace-element chemistry. Most trace elements (Si, Fe, Co, Cu, Zn, Ag, Sb, Te, Pb, Bi, Au, As and Se) form mineral inclusions within molybdenite. The Re contents in molybdenite vary from 8.7 ppm to 1.13 wt.%. The Re distribution within single molybdenite flakes is always extremely heterogeneous. It is argued that a temperature decrease favours the formation of Re-rich molybdenite. The high Re content of molybdenite observed points to a mantle-derived source.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10082
Author(s):  
Jamin G. Wieringa ◽  
Juliet Nagel ◽  
David M. Nelson ◽  
Bryan C. Carstens ◽  
H. Lisle Gibbs

The expansion of the wind energy industry has had benefits in terms of increased renewable energy production but has also led to increased mortality of migratory bats due to interactions with wind turbines. A key question that could guide bat-related management activities is identifying the geographic origin of bats killed at wind-energy facilities. Generating this information requires developing new methods for identifying the geographic sources of individual bats. Here we explore the viability of assigning geographic origin using trace element analyses of fur to infer the summer molting location of eastern red bats (Lasiurus borealis). Our approach is based on the idea that the concentration of trace elements in bat fur is related through the food chain to the amount of trace elements present in the soil, which varies across large geographic scales. Specifically, we used inductively coupled plasma–mass spectrometry to determine the concentration of fourteen trace elements in fur of 126 known-origin eastern red bats to generate a basemap for assignment throughout the range of this species in eastern North America. We then compared this map to publicly available soil trace element concentrations for the U.S. and Canada, used a probabilistic framework to generate likelihood-of-origin maps for each bat, and assessed how well trace element profiles predicted the origins of these individuals. Overall, our results suggest that trace elements allow successful assignment of individual bats 80% of the time while reducing probable locations in half. Our study supports the use of trace elements to identify the geographic origin of eastern red and perhaps other migratory bats, particularly when combined with data from other biomarkers such as genetic and stable isotope data.


2021 ◽  
Author(s):  
R.C. Economos ◽  
et al.

<div>Table S1: SHRIMP zircon U-Pb geochronology data for six samples from the Cadiz Valley batholith. Table S2: SHRIMP zircon U-Pb geochronology data for six samples from the Federal 2-26 Cajon Pass drill core. Table S3: Whole-rock major- and trace-element geochemistry of granitic rocks from Joshua Tree National Park and the Cadiz Valley batholith measured by X-ray fluorescence (XRF) and inductively coupled plasma–mass spectrometry (ICP-MS). Table S4: Rb/Sr and Sm/Nd isotope data from the Joshua Tree National Park and Cadiz Valley batholith. Table S5: Locations, data, and references used to generate histograms in Figure 5.<br></div>


2021 ◽  
Author(s):  
R.C. Economos ◽  
et al.

<div>Table S1: SHRIMP zircon U-Pb geochronology data for six samples from the Cadiz Valley batholith. Table S2: SHRIMP zircon U-Pb geochronology data for six samples from the Federal 2-26 Cajon Pass drill core. Table S3: Whole-rock major- and trace-element geochemistry of granitic rocks from Joshua Tree National Park and the Cadiz Valley batholith measured by X-ray fluorescence (XRF) and inductively coupled plasma–mass spectrometry (ICP-MS). Table S4: Rb/Sr and Sm/Nd isotope data from the Joshua Tree National Park and Cadiz Valley batholith. Table S5: Locations, data, and references used to generate histograms in Figure 5.<br></div>


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 234 ◽  
Author(s):  
Maria I. Filina ◽  
Elena S. Sorokina ◽  
Roman Botcharnikov ◽  
Stefanos Karampelas ◽  
Mikhail A. Rassomakhin ◽  
...  

Kyshtymites are the unique corundum-blue sapphire-bearing variety of anorthosites of debatable geological origin found in the Ilmenogorsky-Vishnevogorsky complex (IVC) in the South Urals, Russia. Their mineral association includes corundum-sapphire, plagioclase (An61–93), muscovite, clinochlore, and clinozoisite. Zircon, churchite-(Y), monazite-(Ce), and apatite group minerals are found as accessory phases. Besides, churchite-(Y) and zircon are also identified as syngenetic solid inclusions within the sapphires. In situ Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb zircon geochronology showed the ages at about 290–330 Ma linked to the Hercynian orogeny in IVC. These ages are close to those of the syenitic and carbonatitic magmas of the IVC, pointing to their syngenetic origin, which is in agreement with the trace element geochemistry of the zircons demonstrating clear magmatic signature. However, the trace element composition of sapphires shows mostly metamorphic signature with metasomatic overprints in contrast to the geochemistry of zircons. The reason for this discrepancy can be the fact that the discrimination diagrams for sapphires are not as universal as assumed. Hence, they cannot provide an unambiguous determination of sapphire origin. If it is true and zircons can be used as traces of anorthosite genesis, then it can be suggested that kyshtymites are formed in a magmatic process at 440–420 Ma ago, most probably as plagioclase cumulates in a magma chamber. This cumulate rock was affected by a second magmatic event at 290–330 Ma as recorded in zircon and sapphire zoning. On the other hand, Ti-in-zircon thermometer indicates that processes operated at relatively lower temperature (<900 °C), which is not enough to re-melt the anorthosites. Hence, zircons in kyshtymites can be magmatic but inherited from another rock, which was re-worked during metamorphism. The most probable candidate for the anorthosite protolith is carbonatites assuming that metamorphic fluids could likely leave Al- and Si-rich residue, but removed Ca and CO2. Further, Si is consumed by the silicification of ultramafic host rocks. However, kyshtymites do not show clear evidence of pronounced metasomatic zonation and evidence for large volume changes due to metamorphic alteration of carbonatites. Thus, the obtained data still do not allow for univocal reconstruction of the kyshtymite origin and further investigations are required.


2021 ◽  
Author(s):  
Sara Raič ◽  
Ferenc Molnár ◽  
Nick Cook ◽  
Hugh O`Brien ◽  
Yann Lahaye

Abstract. Discovering ore deposits is becoming increasingly difficult, and this is particularly true in areas of glaciated terrains. As a new exploration tool for such terrains, we test the vectoring capacities of trace element and sulfur isotope characteristics of pyrite, combined with quantitative tools for whole-rock geochemical datasets. Our target is the Rajapalot gold-cobalt project in northern Finland, where metamorphosed Paleoproterozoic volcanic and-sedimentary rocks of the Peräpohja belt host recently discovered gold prospects, which also have significant cobalt enrichment. The focus is particularly put on a single gold-cobalt prospect, known as Raja, an excellent example of this unusual cobalt-enriched gold deposit, common in the metamorphosed terranes of northern Finland. The major lithologies at Rajapalot comprise variously altered and deformed calcsilicate rocks that alternate with albitized metasedimentary units, mafic volcanic rocks, mica schist and quartzite. Mineralization at Rajapalot prospects is characterized by an older Co-mineralizing event and a younger high-grade Au-mineralization with re-mobilization and re-deposition of Co. Detailed in situ laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a powerful technique that produces the robust trace element and sulfur isotope databases from paragenetically and texturally well-characterized pyrite from the Raja prospect. The results are treated with appropriate log-ratio transformations and used for multivariate statistical data analysis, such as the computation of principal components. Application of these methods revealed that elements such as Co, Ni, Cu, Au, As, Ag, Mo, Bi, Te, Se, Sn, U, Tl and W have high vectoring capacities to discriminate between Co-only and Au-Co zones, as well as between mineralization stages. The systematic pyrite study suggests that homogenous sulfur isotopic characteristics (1.3 ‰ to +5.9 ‰.) and positive loadings of Co, Se, As, Te, Bi and Au onto PC1 are reflective of an early stage of Co-mineralization, while the opposing negative loadings of Mo, Ni, W, Tl, Cu and Ag along PC1 are associated with the Au-mineralizing event. The sulfur isotopic signature of the latter pyrite type is between −1.2 ‰ and +7.4 ‰. Subtle patterns recognized from the whole-rock geochemistry favor an As-Au-Se-Te-W-U signature along the positive axis of PC1 for the localization of high-grade Au-Co-zones, whereas the element group Ni, Cu, Co, Te, Se and As, which has negative loadings onto PC2, will predict Co-only zones. This study shows the efficiency of trace element geochemistry in mineral exploration targeting, which has the capacity to define future targets by  characterizing the metallogenic potential of a host rock, as well as distinguishing various stages of mineralization.  


2010 ◽  
Vol 74 (4) ◽  
pp. 645-658 ◽  
Author(s):  
F. C. J. Vilalva ◽  
S. R. F. Vlach

AbstractTurkestanite, a rare Th- and REE-bearing cyclosilicate in the ekanite–steacyite group was found in evolved peralkaline granitesfrom the Morro Redondo Complex, south Brazil. It occurswith quartz, alkali feldspar and an unnamed Y-bearing silicate. Electron microprobe analysis indicates relatively homogeneous compositions with maximum ThO2, Na2O and K2O contentsof 22.4%, 2.93% and 3.15 wt.%, respectively, and significant REE2O3 abundances(5.21 to 11.04 wt.%). The REE patterns show enrichment of LREE over HREE, a strong negative Eu anomaly and positive Ce anomaly, the latter in the most transformed crystals. Laser ablation inductively coupled plasma mass spectrometry trace element patterns display considerable depletions in Nb, Zr, Hf, Ti and Li relative to whole-rock sample compositions. Observed compositional variations suggest the influence of coupled substitution mechanisms involving steacyite, a Na-dominant analogue of turkestanite, iraqite, a REE-bearing end-member in the ekanite–steacyite group, ekanite and some theoretical end-members. Turkestanite crystals were interpreted as having precipitated during post-magmatic stages in the presence of residual HFSE-rich fluidscarrying Ca, the circulation of which wasenhanced by deformational events.


Sign in / Sign up

Export Citation Format

Share Document