scholarly journals CF3-Substituted Mollugin 2-(4-Morpholinyl)-ethyl ester as a Potential Anti-inflammatory Agent with Improved Aqueous Solubility and Metabolic Stability

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2030
Author(s):  
Ki Hong ◽  
Darong Kim ◽  
Bo-Kyung Kim ◽  
Seo Woo ◽  
Ji Lee ◽  
...  

Although mollugin, the main ingredient of the oriental medicinal herb Rubia cordifolia, has considerable anti-inflammatory effects, it has poor aqueous solubility as well as poor metabolic and plasma stability. To overcome these shortfalls, various mollugin derivatives have been synthesized and evaluated for their ability to inhibit U937 monocyte cell adhesion to HT-29 colonic epithelial cells in TNF-α- or IL-6-induced models of colon inflammation. The 2-(4-morpholinyl)-ethyl ester of CF3-substituted mollugin (compound 15c) showed good water solubility, improved metabolic and plasma stability, and greater inhibitory activity than mesalazine in both the TNF-α- and IL-6-induced colonic epithelial cell adhesion assays, suggesting that 15c is a potential anti-inflammatory agent.

2021 ◽  
Author(s):  
Priscilla Maiselina Sriepindonnta ◽  
Fatimah Nur Fitriani ◽  
Savannah Quila Thirza ◽  
Made Dinda Pratiwi ◽  
Dwi Evan Prima Putra Noviardi ◽  
...  

MedChemComm ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 1305-1310 ◽  
Author(s):  
Sang Won Park ◽  
Suhrid Banskota ◽  
Pallavi Gurung ◽  
You Jin Jin ◽  
Han-eol Kang ◽  
...  

Novel series of anti-inflammatory bowel disease (IBD) agent was identified through TNF-α-induced cell adhesion.


Author(s):  
Adryan Fristiohady ◽  
Muhammad Hajrul Malaka ◽  
Andi Rizqa Wahyuni Safitri ◽  
Dewo Diha ◽  
Saripuddin Saripuddin ◽  
...  

Inflammation is the host's protective response to any stimulus that harms the body. Excessive inflammatory process causes tissue damage. Therefore, an anti-inflammatory agent is needed. The use of natural ingredients, especially sea sponges, is an option to reduce the side effects of anti-inflammatory agents. This utilization is related to the discovery of new agents. So, we tested the effect of the ethanol extract of Petrosia sp. as an anti-inflammatory agent. Animal induced with 1% carrageenan and left for 1 hour. After that the animals were divided into 6 groups (n = 4) and given oral treatment, namely: Group I (normal group); Group II (negative group); Group III (ethanol extract of Petrosia sp. Concentration of 0.05mg/ml); Group IV (ethanol extract of Petrosia sp. Concentration 0.1mg/ml); Group V (ethanol extract of Petrosia sp. Concentration 0.2mg/ml); and Group VI (positive group, Diclofenac Sodium). After 1 hour, the animals were measured for edema volume and plasma TNF-α levels. Based on the research conducted, the ethanol extract of Petrosia sp. decreased edema volume and plasma TNF-α levels in inflammatory mice. The concentration of 0.2mg/mL had a significant effect on the negative control used (p <0.05). On the other hand, Petrosia sp. indicates the presence of alkaloids, flavonoids, and steroids. They may play an important role in the anti-inflammatory process. Thus, it can be concluded that the ethanol extract of Petrosia sp. has anti-inflammatory activity.


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900
Author(s):  
Armond Daci ◽  
Markus Gold-Binder ◽  
Davide Garzon ◽  
Alessio Patea ◽  
Giangiacomo Beretta

In this work we have characterized and standardized the solvent extracts of the fruits of Onopordum acanthium, a plant widely distributed from Europe to Asia and used in different traditional medicines. Fruits were extracted with methanol (ME) and n-hexane (HE) and the extract compositions determined by GC-MS, HPLC-UV/DAD, HPLC-TQMS and 1H NMR spectroscopy. Anti-inflammatory activity (IL-8 and E-selectin, qPCR and ELISA) was investigated in HUVECtert cells stimulated with TNF-α and LPS. Arctiin and isochlorogenic acid were found in ME (87±2%, w/w, and 10.2±0.2%, w/w; 38.0±3.2 mg/gFRUITS and 3.5 ± 0.4 mg/gFRUITS) and (ii) paraffins in the HE (195.6 ± 5.6 mg/g). A dose dependent (from 15 to 40 μgME/mL corresponding to 20–75 μM arctiin) inhibition of E-selectin and of the induction of IL-8 was induced by LPS. The results of this study support the use of O. acanthium fruits in traditional medicine as an anti-inflammatory agent and for cancer prevention and treatment.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1935-1935
Author(s):  
James A. Martin ◽  
David E. Joyce ◽  
Rashna Balsara ◽  
Victoria A. Ploplis ◽  
Francis J. Castellino

Abstract A human recombinant form of the endogenous anticoagulant APC (rhAPC) has been approved for treatment of severe sepsis, a condition with 30-50% mortality and affecting 750,000 US patients per year. Clinical and in vitro studies show that rhAPC has pro-fibrinolytic, anti-inflammatory, and anti-apoptotic properties. In order to better understand the anti-inflammatory mechanism of rhAPC and its receptor EPCR on primary murine aortic endothelial cells (EC), responses were compared between wild type (WT) and low-expressing endothelial protein C receptor (EPCRδ/δ) EC by total RNA for specified endothelial inflammatory markers. The purpose was to determine the effect of rhAPC and low expression of EPCR on murine arterial EC responses to tumor necrosis factor alpha (TNF-α) or endotoxin (LPS). EC from C57BL/6 mice aorta, WT or EPCRδ/δ, were isolated, cultured, and positively selected for EC markers (CD105, CD106). EC in serum free media were pretreated with 5ug/mL rhAPC (Eli Lilly) for 16 hours followed by challenge with 100ng/mL TNF-α or 10ug/mL LPS for 8 hours. Total RNA was analyzed by Quantitative Real-time PCR (QRT-PCR) for CXC chemokines MIP-2 and KC, adhesion markers E-Selectin or ICAM-1, cytokines MCP-1 and IL-6, and NFκB-1. Mean +/− standard error of the mean for the time points (T0, 0.5hr, 1hr, 2hr, 4hr, and 8hr) after TNF-α or LPS were compared between treatment groups. Both TNF-α and LPS produced expected characteristic fold changes of RNA expression over the eight hour time period in the murine EC. Without rhAPC EPCRδ/δ EC showed a similar response compared to WT EC. When pretreated with rhAPC for 16 hours followed by LPS challenge, EC RNA transcript levels for CXC chemokines and adhesion markers were suppressed more in EPCRδ/δ compared to WT EC. When pretreated with rhAPC for 16 hours followed by TNF-α challenge, RNA transcript levels for CXC chemokines and adhesion markers were elevated or showed little change in WT EC and EPCRδ/δ EC compared to EC not given rhAPC. Nuclear factor NFκB-1 RNA was suppressed in both WT EC and EPCRδ/δ EC with rhAPC pretreatment and subsequent inflammatory agent (LPS or TNF-α). Most striking was the unexpected suppressed response of rhAPC pretreated EPCRδ/δ EC compared to WT EC after addition of either inflammatory agent. Further studies suggested that surface EPCR protein did not appear to be enhanced with any treatment combination, or with rhAPC alone. These results are consistent with previously reported endothelial cell specific rhAPC response of CXC chemokines and the ability of rhAPC to suppress other TNF-α mediated inflammatory responses (eg. MCP-1 and NFkB-1). In addition, rhAPC pretreatment appeared to suppress LPS mediated inflammatory responses, including CXC chemokines. The enhanced suppression of inflammatory responses seen in arterial EPCRδ/δ EC compared to WT EC remains unexplained. Results from this study also indicate primary murine arterial endothelial cells treated with rhAPC respond differently to challenge with TNF-α versus LPS.


2010 ◽  
Vol 298 (4) ◽  
pp. C929-C941 ◽  
Author(s):  
Nilesh M. Dagia ◽  
Gautam Agarwal ◽  
Divya V. Kamath ◽  
Anshu Chetrapal-Kunwar ◽  
Ravindra D. Gupte ◽  
...  

A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-α, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-κB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-κB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110α/γ PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-κB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-α and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2489-2489 ◽  
Author(s):  
Andreia A Canalli ◽  
Renata P. Ferreira ◽  
Sara T.O. Saad ◽  
Nicola Conran ◽  
Fernando F. Costa

Abstract Leukocytes may have a propagating and, possibly, initiating role in sickle cell disease (SCD) vaso-occlusion. Endothelial dysfunction contributes to the vaso-occlusion process and leads to inflammation, leukocyte and red cell adhesion. Markers of neutrophil activation are also increased in SCD, in association with increased levels of circulating cytokines and increased leukocyte adhesion. In animal models, vaso-occlusion causes hypoxia/reperfusion, leading to vascular endothelium damage and an inflammatory response. We postulate that anti-inflammatory agents may reduce the participation of activated endothelium in the vaso-occlusive process. Statins are commonly used to treat arteriosclerosis and have anti-inflammatory effects that include a regulatory action on endothelial function, reduced oxidative stress and inflammation. The objective of this study was to investigate the in vitro effect of simvastatin on the adhesion of sickle neutrophils to activated endothelial cell layers (HUVEC). Neutrophils (Neu) were isolated from the peripheral blood of healthy controls (ConNeu) and SCD (SCDNeu) individuals in steady state over ficoll-paque gradients. Cell adhesion (2×106 cell/ml in Ham’s F12 K) to cultured human umbilical vein endothelial cells (HUVEC) grown to confluence was assessed using static adhesion assays. HUVEC cells were treated with or without 1 μg/ml simvastatin for 6 hours in the absence or presence of a 10nM TNF-α activating stimulus (3 hours) before allowing adhesion of Neu to the cell layers (30 min, 37°C, 5%CO2). Neu from SCD patients demonstrated a significantly greater adhesion to HUVEC than ConNeu (20.5 ± 1.9% compared to 13.8 ± 1.7 %; n=15; p&lt;0.02; Mann Whitney test). Subsequently, Neu from patients and controls were allowed to adhere to endothelial layers previously treated with simvastatin; adhesion was not significantly different to the adhesion of Neu to nonsimvastatin treated HUVEC (16.7 ± 3.2% for ConNeu; n=8, p&gt;0.05 and 19.8 ±2.7% for SCDNeu; n=11, p&gt;0.05, paired t test). Pre-treatment of HUVEC with the cytokine TNF-α increased the adhesion of SCD and Con Neu to HUVEC (40.9 ± 5.4%; 28.9 ± 5.0%, respect, N&gt;8, P&lt;0.01 compared to adhesion to non-activated HUVEC). Interestingly, when the endothelium layer was protected with simvastatin and then stimulated with TNF-α, SCDNeu adhesion was significantly diminished (reduced to 31.3% ± 3.6%; n=11, p&lt;0.005 comp. to adhesion to non-simvastatin-treated HUVEC); in contrast, no difference in the adhesion of ConNeu to HUVEC treated with TNF-α and simvastatin was observed (31.9 ± 5.8%, n=8, p&gt;0.05 for ConNeu). In conclusion, data indicate that under in vitro inflammatory conditions, simvastatin appears to protect endothelium layers and reduces SCD leukocyte adhesion. We speculate that statins may have anti-inflammatory properties and, as such, may be useful for diminishing endothelial activation and, in turn, preventing the adhesion of leukocytes adhesion to the vascular wall in SCD, a mechanism that is essential to the vaso-occlusive process.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1752 ◽  
Author(s):  
Seung Hwang ◽  
Hyun Kim ◽  
Guanglei Zuo ◽  
Zhiqiang Wang ◽  
Jae-Yong Lee ◽  
...  

The aim of this study was searching anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. The inhibitory effect of chrysin on advanced glycation end-products (AGEs) was investigated by trapping methylglyoxal (MGO), and MGO-conjugated adducts of chrysin were analyzed using LC-MS/MS. The mono- or di-MGO-conjugated adducts of chrysin were present at 63.86 and 29.69% upon 48 h of incubation at a chrysin:MGO ratio of 1:10. The MGO adducted positions on chrysin were at carbon 6 or 6 & 8 in the A ring by classic aldol condensation. To provide applicable knowledge for developing chrysin derivatives as AGE inhibitors, we synthesized several O-alkyl or ester derivatives of chrysin and compared their AGE formation inhibitory, anti-inflammatory, and water solubility characteristics. The results showed that 5,7-di-O-acetylchrysin possessed higher AGE inhibitory and water solubility qualities than original chrysin, and retained the anti-inflammation activity. These results suggested that 5,7-di-O-acetylchrysin could be a potent functional food ingredient as an AGE inhibitor and anti-inflammatory agent, and promotes the development of the use of chrysin in functional foods.


2013 ◽  
Vol 305 (3) ◽  
pp. C255-C265 ◽  
Author(s):  
Ross N. England ◽  
Kyle J. Preston ◽  
Rosario Scalia ◽  
Michael V. Autieri

Vascular endothelial cell (EC) inflammation is a key event in the pathogenesis of multiple vascular diseases. We tested the hypothesis that interleukin-19 (IL-19), an anti-inflammatory Th2 interleukin, could have a direct anti-inflammatory effect on ECs to decrease inflammation. IL-19 can significantly decrease tumor necrosis factor (TNF)-α-driven intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mRNA and protein abundance in cultured human coronary artery ECs ( P < 0.01). IL-19 treatment of ECs, but not monocytes, significantly reduced monocyte adhesion to EC monolayers ( P < 0.01). In vivo, systemic administration of IL-19 could significantly reduce TNF-α-induced leukocyte rolling and adhesion in wild-type mice as assayed by intravital microscopy ( P < 0.05). IL-19 does not reduce TNF-α-stimulated NF-κB activation in ECs but does decrease serine phosphorylation and cytoplasmic translocation of the mRNA stability factor HuR and significantly reduces stability of ICAM-1 and VCAM-1 mRNA ( P < 0.01). These data are the first to report that IL-19 can reduce leukocyte-endothelial cell adhesion and the first to propose reduction in HuR-mediated mRNA stability of ICAM-1 and VCAM-1 as a mechanism. Expression of IL-19 by ECs may represent a protective mechanism to promote resolution of the vascular response to inflammation. Function of IL-19 outside of the immune system is a novel concept, suggesting that resident vascular cells can adopt a Th2 phenotype, and has important ramifications for numerous inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document