scholarly journals Application of Antimicrobial Nanoparticles in Dentistry

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1033 ◽  
Author(s):  
Wenjing Song ◽  
Shaohua Ge

Oral cavity incessantly encounters a plethora of microorganisms. Plaque biofilm—a major cause of caries, periodontitis and other dental diseases—is a complex community of bacteria or fungi that causes infection by protecting pathogenic microorganisms from external drug agents and escaping the host defense mechanisms. Antimicrobial nanoparticles are promising because of several advantages such as ultra-small sizes, large surface-area-to-mass ratio and special physical and chemical properties. To better summarize explorations of antimicrobial nanoparticles and provide directions for future studies, we present the following critical review. The keywords “nanoparticle,” “anti-infective or antibacterial or antimicrobial” and “dentistry” were retrieved from Pubmed, Scopus, Embase and Web of Science databases in the last five years. A total of 172 articles met the requirements were included and discussed in this review. The results show that superior antibacterial properties of nanoparticle biomaterials bring broad prospects in the oral field. This review presents the development, applications and underneath mechanisms of antibacterial nanoparticles in dentistry including restorative dentistry, endodontics, implantology, orthodontics, dental prostheses and periodontal field.

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4731
Author(s):  
Changkun Liu ◽  
Dan Liao ◽  
Fuqing Ma ◽  
Zenan Huang ◽  
Ji’an Liu ◽  
...  

In this study, the surface-initiated atom transfer radical polymerization (SI-ATRP) technique and electroless deposition of silver (Ag) were used to prepare a novel multi-functional cotton (Cotton-Ag), possessing both conductive and antibacterial behaviors. It was found that the optimal electroless deposition time was 20 min for a weight gain of 40.4%. The physical and chemical properties of Cotton-Ag were investigated. It was found that Cotton-Ag was conductive and showed much lower electrical resistance, compared to the pristine cotton. The antibacterial properties of Cotton-Ag were also explored, and high antibacterial activity against both Escherichia coli and Staphylococcus aureus was observed.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Mohamad M. Ahmad ◽  
Hicham Mahfoz Kotb ◽  
Shehla Mushtaq ◽  
Mir Waheed-Ur-Rehman ◽  
Christopher M. Maghanga ◽  
...  

This article outlines the preparation of manganese-doped copper nanoparticles (Mn + Cu NPs) using Vinca rosea (L.) leaf extract as a convenient and environmentally friendly substance. UV–vis, FT–IR, XRD, SEM–EDAX, and DLS instrumental techniques were employed to describe the physical and chemical properties of synthesized V. rosea extract-mediated Vr-Mn + Cu NPs. The synthesized Vr-Mn + Cu NPs were observed to be monodispersed and spherical, with an average size of 412 nm. The plant extract includes a variety of phytochemical components. The Vr-Mn + Cu NPs also have potential antioxidant and antibacterial properties against selected pathogens. The green synthesized Vr-Mn + Cu NPs showed a maximum inhibition zone of 16.33 ± 0.57 mm against E. coli. For dye degradation, MR, EBT, and MO showed the highest degradation percentage capabilities with Vr-Mn + Cu NP-based adsorbents, which were determined to be 78.54 ± 0.16, 87.67 ± 0.06, and 69.79 ± 0.36. The results clearly show that biosynthesized Vr-Mn + Cu NPs may be employed as an antioxidant, antibacterial, photocatalytic dye degradation, and catalytic agent, as well as being ecologically benign.


2018 ◽  
Vol 6 (2) ◽  
pp. 52
Author(s):  
Alvera Raisa ◽  
Srikandi Srikandi ◽  
Ricson P. Hutagaol

Optimization of the Addition of Honey as an agent of an Anti bacterial Agent Staphylococcus aureus in Production of Shower liquid soapThe study was begun with making the basic shower liquid soap, then aditing the honey with a variety of different concentrations. In this study, the addition of honey were 0%; 2,5%; 5%; 7,5%; 10%; 12,5% and 15%. After that tested the effectiveness of antibacterial agent microbiology. Then analyzing physical and chemical properties of liquid soap in accordance with SNI 06-4085-1996. The parameters tested were pH, viscosity, and density, test quantity foam, and test preferences. Optimal concentration of the addition of honey in a liquid bath soap to be able to inhibit the growth of Staphylococcus aureus are at the level of 10%. When compared with Triclosan soap, shower liquid soap with the addition of honey 5% could compete with antibacterial properties of triclosan soap using a concentration of 0.3%. The addition of honey with various concentrations of honey affect the physical and chemical properties of liquid soap such as pH, viscosity, density, and the amount of foam.Keywords: Liquid Soap, Honey and bacteria Staphylococcus aureus   ABSTRAKPenelitian dimulai dengan melakukan pembuatan dasar sabun mandi cair, kemudian dilakukan penambahan madu dengan berbagai konsentrasi berbeda. Dalam penelitian ini dilakukan penambahan madu sampai lebih dari 5% yaitu 0%; 2,5%; 5%; 7,5%; 10%; 12,5% dan 15%. Setelah itu dilakukan uji efektifitas dari zat antibakteri secara mikrobiologi. Kemudian dilakukan analisis terhadap sifat fisika dan kimia sabun mandi cair sesuai dengan SNI 06-4085-1996.  Parameter yang diuji adalah pH, viskositas, dan berat jenis, uji banyak busa, dan uji kesukaan. Konsentrasi optimal penambahan madu pada sabun mandi cair untuk bisa menghambat pertumbuhan bakteri Staphylococcus aureus adalah pada taraf 10%. Bila dibandingkan dengan sabun Triclosan, sabun mandi cair dengan penambahan madu 5% dapat menyaingi sifat antibakteri dari sabun yang menggunakan Triclosan dengan konsentrasi 0,3%. Penambahan madu dengan berbagai konsentrasi berpengaruh kepada sifat fisika dan kimia dari sabun mandi cair seperti pH, viskositas, berat jenis, serta jumlah busa.Kata kunci :  Sabun Mandi Cair, Madu dan Bakteri Staphylococcus aureus


2018 ◽  
Vol 20 (87) ◽  
pp. 13-18
Author(s):  
V.V. Kasianchuk ◽  
O.М. Berhilevych ◽  
I.V. Negai

For publishing this article, two important ideas were indicated: the first one is the necessity of scientific research to establish antibacterial properties in those substances that can replace antibiotics in the fight against antibiotic resistant microorganisms; the second is to expand the possibilities for using a national Ukrainian product, such as honey. Ukraine is one of the important exporters of honey in the EU. This honey may have unique physical and chemical properties that will characterize its therapeutic effect. In other countries, these issues are actively studied by scientists, which provide special healing brands to certain its species. These issues are not well study in Ukraine. The aim of present study was to an experimental study of the use of antibacterial properties of honey in relation to methicillin-resistant Staphylococcus spp. Materials for research were isolates of methicillin-resistant Staphylococcus spp. (MRSS) and samples of natural honey that were obtained from apiaries of the Odessa region. The standard methods of isolation Staphylococcus spp and methods determining the quality of honey were used. Qualitative indicators of honey included organoleptic studies, moisture and acidity, proline content. Determination of antibacterial properties of honey was studied in dilution it in distilled water in proportions 1:1, 1:2, 2:1 and 3:1 with following plating in nutrient agar wells on Petri dishes. It has been experimentally established that honey may be an excellent remedy against MRSS, but not all honey has the same antimicrobial activity. It has been established that the antibacterial properties of honey in relation to MRSS are influenced by the physical and chemical composition, namely the content of proline. It has been experimentally established that most types of investigated honey samples with high qualitative indices exhibited antibacterial action against antibiotic-resistant isolates of Staphylococcus spp., With higher levels of antibacterial activity showing those honey samples that had a higher proline content of more than 350 mg/kg. It was established that the antibacterial action of honey against antibiotic resistant isolates of Staphylococcus spp. It is better manifested in more concentrated solutions – when diluted in the ratio of honey / solvent as 2:1 and 3:1 (growth retardation zones from 34 mm to 58 mm) compared to solutions of honey diluted in proportions 1:1 and 1:2 (growth retardation zones from 10 mm to 15 mm).


2021 ◽  
Vol 340 ◽  
pp. 01030
Author(s):  
Balnur Baltabayeva ◽  
Aliya Ospanova ◽  
Zhanar Kubasheva

In this study, a nanocomposite based on kaolin from the Alekseevsky deposit (Kazakhstan), containing nano-silver particles, was synthesized. Kaolin has good physical and chemical properties and is an effective carrier for medicines. The synthesis of AgNPs/kaolin nanocomposites was carried out by chemical reduction. Impregnation of silver nanoparticles into silica matrix can prevent the agglomeration of mobile ions, and thereby preserve the antibacterial activity of the compound. The composition and structure of the resulting nanocomposite were studied using SEM/EDS analysis to study the morphology and elemental composition of natural and silver-modified kaolin, the specific surface was determined by the BET method, and functional groups were identified by IR spectroscopy. The resulting composite was tested for antibacterial activity against Gram-negative and Gram-positive bacteria (E.Сoli, S. Aureus).


2014 ◽  
Vol 80 (22) ◽  
pp. 7061-7070 ◽  
Author(s):  
Benoit Pugin ◽  
Fabián A. Cornejo ◽  
Pablo Muñoz-Díaz ◽  
Claudia M. Muñoz-Villagrán ◽  
Joaquín I. Vargas-Pérez ◽  
...  

ABSTRACTTellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacteriumPseudomonassp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced inEscherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties againstE. coli, with no apparent cytotoxicity against eukaryotic cells.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2069 ◽  
Author(s):  
Pavel Sťahel ◽  
Věra Mazánková ◽  
Klára Tomečková ◽  
Petra Matoušková ◽  
Antonín Brablec ◽  
...  

Polyoxazolines are a new promising class of polymers for biomedical applications. Antibiofouling polyoxazoline coatings can suppress bacterial colonization of medical devices, which can cause infections to patients. However, the creation of oxazoline-based films using conventional methods is difficult. This study presents a new way to produce plasma polymerized oxazoline-based films with antibiofouling properties and good biocompatibility. The films were created via plasma deposition from 2-methyl-2-oxazoline vapors in nitrogen atmospheric pressure dielectric barrier discharge. Diverse film properties were achieved by increasing the substrate temperature at the deposition. The physical and chemical properties of plasma polymerized polyoxazoline films were studied by SEM, EDX, FTIR, AFM, depth-sensing indentation technique, and surface energy measurement. After tuning of the deposition parameters, films with a capacity to resist bacterial biofilm formation were achieved. Deposited films also promote cell viability.


Biologia ◽  
2020 ◽  
Vol 75 (10) ◽  
pp. 1679-1683 ◽  
Author(s):  
Paweł Szymkowiak ◽  
Maryia Tsiareshyna ◽  
Ryszard Koczura

Abstract Due to physical and chemical properties as well as biocompatibility, spider silk has a great potential for use in medicine and biotechnology. It is applicable in the regeneration of the skin and nerve grafts. In this work, antibacterial property of spider silk was investigated. This feature would be especially useful for the application of spider threads in medicine. Silk of the spiders Linothele fallax (Mello-Leitão, 1926) and Linothele megatheloides Paz & Raven, 1990 was tested on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis. Prior to inoculation, thesilk was weighed, sterilized with hydrogen peroxide and the effect of the silk on bacteria was tested in Mueller-Hinton broth. A lack of antibacterial properties of the silk of L. fallax and L. megatheloides was observed. The results on antimicrobial properties of silk of mygalomorph spiders are published for the first time.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Sign in / Sign up

Export Citation Format

Share Document