scholarly journals Diterpenoid Lactones with Anti-Inflammatory Effects from the Aerial Parts of Andrographis paniculata

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2726 ◽  
Author(s):  
Lin Gan ◽  
Yuanru Zheng ◽  
Lijuan Deng ◽  
Pinghua Sun ◽  
Jiaxi Ye ◽  
...  

Andrographis paniculata (AP) has been widely used in China for centuries to treat various diseases, and especially to treat inflammation. Diterpenoid lactones are the main anti-inflammatory components of AP. However, systematic chemical composition and biological activities, as well as key pharmacophores, of these diterpenoid lactones from AP have not yet been clearly understood. In this study, 17 diterpenoid lactones, including 2 new compounds, were identified by spectroscopic methods, and most of them attenuated the generation of TNF-α and IL-6 in LPS-induced RAW 274.7 cells examined by ELISA. Pharmacophores of diterpenoid lactones responsible for the anti-inflammatory activities were revealed based on the quantitative structure-activity relationship (QSAR) models. Moreover, new compounds (AP-1 and AP-4) exerted anti-inflammatory activity in LPS microinjection-induced zebrafish, which might be correlated with the inhibition of the translocation of NF-κB p65 from cytoplasm to nucleus. Our study provides guidelines for future structure modification and rational drug design of diterpenoid lactones with anti-inflammatory properties in medical chemistry.

2020 ◽  
Vol 20 (19) ◽  
pp. 1704-1719
Author(s):  
Mayara Barbalho Félix ◽  
Rodrigo Santos Aquino de Araújo ◽  
Renata Priscila Costa Barros ◽  
Carlos Alberto de Simone ◽  
Raiza Raianne Luz Rodrigues ◽  
...  

Background: Chemoinformatics has several applications in the field of drug design, helping to identify new compounds against a range of ailments. Among these are Leishmaniasis, effective treatments for which are currently limited. Objective: To construct new indole 2-aminothiophene molecules using computational tools and to test their effectiveness against Leishmania amazonensis (sp.). Methods: Based on the chemical structure of thiophene-indol hybrids, we built regression models and performed molecular docking, and used these data as bases for design of 92 new molecules with predicted pIC50 and molecular docking. Among these, six compounds were selected for the synthesis and to perform biological assays (leishmanicidal activity and cytotoxicity). Results: The prediction models and docking allowed inference of characteristics that could have positive influences on the leishmanicidal activity of the planned compounds. Six compounds were synthesized, one-third of which showed promising antileishmanial activities, with IC50 ranging from 2.16 and 2.97 μM (against promastigote forms) and 0.9 and 1.71 μM (against amastigote forms), with selectivity indexes (SI) of 52 and 75. Conclusion: These results demonstrate the ability of Quantitative Structure-Activity Relationship (QSAR)-based rational drug design to predict molecules with promising leishmanicidal potential, and confirming the potential of thiophene-indole hybrids as potential new leishmanial agents.


Author(s):  
Shan-Shan Zhang ◽  
Qiu-Wan Tan ◽  
Li-Ping Guan

: Quinoline, isoquinoline and indoles are common heterocyclic compounds. They have many biological activities, such as antioxidant, anti-inflammatory, antibacterial, antitumor, anti-virus, anti-rheumatism, immunity regulation, expectorant, and analgesic. Over the past few centuries, traditional natural products have made great contributions to the discovery and development of new therapeutic agents. Many important drugs have been found from these three classes of compounds. In this mini-review, we mainly cover the research progress on antioxidant, anti-inflammatory, antibacterial, analgesic activities of quinoline, isoquinoline, and indole compounds over the past 20 years (2000-2019). We aim to explore new characteristic groups or structures in the search for active lead compounds and provide a basis for rational drug design.


Author(s):  
Mina Kianpour ◽  
Esmat Mohammadinasab ◽  
Tahereh Momeni Esfahani

: The aim of the present study was to develop quantitative structure-activity relationship (QSAR) models, based on molecular descriptors to predict the oral acute toxicity (LD50) of organophosphate compounds. The QSAR models based on genetic algorithm-multiple linear regression (GA-MLR) and back-propagation artificial neural network (BP-ANN) methods were proposed. The prediction experiment showed that the BP-ANN method was a reliable model for screening molecular descriptors, and molecular descriptors obtained by BP-ANN models could well characterize the molecular structure of each compound. It was indicated that among molecular descriptors to predict the LD50 (mgkg-1) of organophosphates, ALOGP2, RDF030u, RDF065p and GATS5m descriptors have more importance than the other descriptors. Also BP-ANN approach with the values of root mean square error (RMSE= 0.00168), square correlation coefficient (R2= 0.9999) and absolute average deviation (AAD=0.6981631) gave the best outcome, and the model predictions were in good agreement with experimental data. The proposed model may be useful for predicting LD50 (mgkg-1) of new compounds of similar class.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1545
Author(s):  
Hwa-Young Song ◽  
Da-Eun Jeong ◽  
Mina Lee

The aim of this study was to identify the optimal extraction conditions for leaves of Osmanthus fragrans var. aurantiacus. Inhibitory effects of various extracts on NO production were compared. Antioxidant evaluations for total phenol and flavonoid contents were carried out using various extracts of O. fragrans var. aurantiacus leaves obtained under optimal extraction conditions that showed the greatest effect on NO production. The optimal method for extracting O. fragrans var. aurantiacus leaves resulted in an extract named OP OFLE. OP OFLE showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. Phillyrin (PH) was isolated as a major compound from OP OFLE by HPLC/DAD analysis. OP OFLE and PH reduced inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 protein expression and downregulated proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in LPS-stimulated RAW 264.7 and HT-29 cells. To determine the signal pathway involved in the inhibition of NO production, a Western blot analysis was performed. Results showed that OP OFLE decreased phosphorylation of extracellular regulated kinase (pERK) 1/2 and the expression of nuclear factor-kappa B (NF-κB). Our results suggest that extracts of O. fragrans var. aurantiacus leaves and its major components have biological activities such as antioxidative and anti-inflammatory properties.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Kyeong Wan Woo ◽  
Ki Ho Lee ◽  
Ji Hun Jang ◽  
Min Suk Kim ◽  
Hyun Woo Cho ◽  
...  

Phytochemical investigation of the methanol extract of the aerial parts of Iris minutiaurea (Iridaceae) using column chromatography led to the isolation of a new xanthone glycoside, 1-hydroxy-3,5-dimethoxy-xanthone-6- O-β-D-glucoside (1), together with one known flavonoid glycoside (2). The structure of this new compound was elucidated by analysis of spectroscopic, including ID (1H, 13C), 2D NMR (COSY, HMQC, HMBC), and high resolution fast atom bombardment mass spectrometric (HR-FAB-MS) data and enzyme hydrolysis. We found that compounds 1 and 2 significantly suppressed production of NO, and pro-inflammatory cytokine in LPS-induced RAW264.7 cells. These results suggest that compound 1 and 2 have anti-inflammatory activity related with production of TNF-α, IL-6, IL-β, and NO in macrophages, and then compound 1 were more efficient than compound 2 in lowering the level of proinflammatory cytokine.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bhanuz Dechayont ◽  
Pathompong Phuaklee ◽  
Jitpisute Chunthorng-Orn ◽  
Thana Juckmeta ◽  
Onmanee Prajuabjinda ◽  
...  

Abstract Background Mahanintangtong is listed in the Thailand’s National List of Essential Medicines (NLEM). It is used to treat non-specific fevers and illnesses such as pharyngitis and chickenpox. In this study, we investigated the biological activities of the different medicinal plants used in the Mahanintangtong formula. Methods The plant materials were extracted by maceration and decoction. Antimicrobial activity, assessed by disc diffusion method, the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were compared with commercially available standard antibiotics. To elucidate the anti-inflammatory mechanisms, inhibition of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) production was tested by Griess and ELISA techniques. Antioxidant activity was measured by ABTS and DPPH scavenging assays. Results The extracts with the best antimicrobial activities were carbonized Tectona grandis showing against Streptococcus pyogenes, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. The ethanol extract of Dracaena loureiroi wood exhibited the highest NO and IL-6 inhibitory activity with IC50 values of 9.42 ± 1.81 and 12.02 ± 0.30 μg/mL, respectively. The ethanol extract of Pogostemon cablin had the highest TNF-α inhibitory with IC50 values of 10.68 ± 0.02 μg/mL. In anti-free radical testing, the ethanol extract of D. loureiroi displayed high antioxidant activity by both ABTS and DPPH assays. Conclusion The ethanol extracts from carbonized T. grandis and Mahanintangtong showed good antimicrobial activity, especially against S. pyogenes, and good anti-inflammatory activity. These findings are relevant to the pathogenesis of pharyngitis and justify additional studies to see if Mahanintangtong could have clinical utility.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1004
Author(s):  
Monika Hejna ◽  
Lauren Kovanda ◽  
Luciana Rossi ◽  
Yanhong Liu

The objectives of the study were to test the biological activities of peppermint and spearmint oils via (i) measuring in vitro anti-inflammatory effects with porcine alveolar macrophages (PAMs), (ii) determining the barrier integrity of IPEC-J2 by analyzing transepithelial electrical resistance (TEER), (iii) testing their antioxidant activities, and (iv) investigating the antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) F18+. Briefly, (i) macrophages were seeded at 106 cells/mL and treated (24 h) with mint oils and lipopolysaccharide (LPS). The treatments were 2 (0 or 1 μg/mL of LPS) × 5 (0, 25, 50, 100, 200 µg/mL of mint oils). The supernatants were collected for TNF-α and IL-1β measurement by ELISA; (ii) IPEC-J2 cells were seeded at 5 × 105 cells/mL and treated with mint oils (0, 25, 50, 100, and 200 μg/mL). TEER (Ωcm2) was measured at 0, 24, 48, and 72 h; (iii) the antioxidant activity was assessed (0, 1, 50, 100, 200, 500, and 600 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays; (iv) overnight-grown ETEC F18+ were quantified (CFU/mL) after supplementing with peppermint and spearmint oils (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL). All data were analyzed using the MIXED procedure. Both mint oils significantly inhibited (p < 0.05) IL-1β and TNF-α secretion from LPS-stimulated PAMs. Mint oil treatments did not affect TEER in IPEC-J2. Spearmint and peppermint oils exhibited (p < 0.05) strong antioxidant activities in DPPH and reducing power assays. Both mint oils also dose-dependently inhibited (p < 0.05) the growth of ETEC F18+ in vitro. The results of the study indicated that both mint oils are great candidate feed additives due to their in vitro anti-inflammatory, antioxidant, and antimicrobial effects. Further research is needed to evaluate their efficacy in vivo.


2014 ◽  
Vol 9 (5) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Min-Jin Kim ◽  
Kyong-Wol Yang ◽  
Sang Suk Kim ◽  
Suk Man Park ◽  
Kyung Jin Park ◽  
...  

Though many essential oils from citrus peels are claimed to have several medicinal functions, the chemical composition and biological activities of the essential oils of Citrus flowers have not been well described. Therefore, this study intended to investigate the chemical composition and anti-inflammatory potential of essential oils from C. unshiu flower (CEO) to support its purported beneficial health effects. The chemical constituents of the CEO, analyzed by gas chromatography-mass spectrometry (GC-MS), included γ-terpinene (24.7%), 2-β-pinene (16.6%), 1-methyl-2-isopropylbenzene (11.5%), L-limonene (5.7%), β-ocimene (5.6%), and α-pinene (4.7%). The effects of the CEO on nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages were also examined. The results indicate that the CEO is an effective inhibitor of LPS-induced NO and PGE2 production in RAW 264.7 cells. Additionally, CEO was shown to suppress the production of inflammatory cytokines including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6. Based on these results, CEO may be considered a potential anti-inflammatory candidate with human health benefits.


Sign in / Sign up

Export Citation Format

Share Document