scholarly journals Two-Step Elution Recovery of Cyanide Platinum Using Functional Metal Organic Resin

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2779 ◽  
Author(s):  
Muhan Chen ◽  
Qun Ye ◽  
Shaosong Jiang ◽  
Min Shao ◽  
Ci Jin ◽  
...  

A novel functional ion-exchange/adsorption metal organic resin (MOR), TEBAC-HKUST-1, was prepared and characterized. Ethanedithiol was used as the grafting agent to introduce thiol groups onto HKUST-1, and 4-vinylbenzyl chloride was then grafted onto SH-HKUST-1 using thiol groups. Finally, the quaternary ammonium functional group was immobilized onto the carrier by performing a quaternization reaction. The structure and property of TEBAC-HKUST-1 MOR were characterized by TGA, N2 adsorption–desorption, FTIR, SEM, and XRD. TEBAC-HKUST-1 MOR was used to remove metal cyanide complexes from wastewater. The adsorption was rapid, and the metal cyanide complexes including Pt(CN)42−, Co(CN)63−, Cu(CN)32−, and Fe(CN)63− were removed in 30 min. TEBAC-HKUST-1 MOR exhibited a high stability in neutral and weak basic aqueous solutions. Furthermore, Pt(II) could be efficiently recovered through two-step elution. The recovery rate of Pt(II) for five cycles were over 92.0% in the mixture solution containing Pt(CN)42−, Co(CN)63−, Cu(CN)32−, and Fe(CN)63−. The kinetic data were best fitted with the pseudo second-order model. Moreover, the isothermal data were best fitted with the Langmuir model. The thermodynamic results show that the adsorption is a spontaneous and exothermic process. TEBAC-HKUST-1 MOR not only exhibited excellent ability for the rapid removal of metal cyanide complexes, but also provided a new idea for the extraction of noble metals from cyanide-contaminated water.

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 2086 ◽  
Author(s):  
Qin Zhang ◽  
Muhan Chen ◽  
Lijiang Zhong ◽  
Qun Ye ◽  
Shaoshong Jiang ◽  
...  

In this study, quaternary-ammonium-functionalized metal–organic frameworks (MOFs) Et-N-Cu(BDC-NH2)(DMF), were prepared, characterized, and applied for the highly effective removal of metal cyanide complexes, including Pd(CN)42−, Co(CN)63−, and Fe(CN)63−. Batch studies were carried out, and the maximum adsorption capacities of Pd(II), Co(III), and Fe(III) reached 172.9, 101.0, and 102.6, respectively. Adsorption was rapid, and equilibrium was established within 30 min. Et-N-Cu(BDC-NH2)(DMF) exhibited high thermal and chemical stability. Furthermore, absorbed Pd(CN)42− was selectively recovered by two-step elution. First, Co(CN)63− and Fe(CN)63− were eluted with a 1.5 mol L−1 KCl solution. Elution rates of Co(CN)63− and Fe(CN)63− were greater than 98.0%, whereas the elution percentage of Pd(CN)42− was less than 2.0%. Second, >97.0% Pd(CN)42− on the loaded MOFs was eluted using a 2.0 mol L−1 KI solution. The recovery rate of Pd(CN)42− was greater than 91.0% after five testing cycles. Adsorption isotherms, kinetics models, and adsorption thermodynamics of Pd(CN)42− on Et-N-Cu(BDC-NH2) (DMF) were also systematically investigated. The Et-N-Cu(BDC-NH2) (DMF) absorbent exhibited a rapid, excellent ability for the adsorption of metal cyanide complexes.


2022 ◽  
Author(s):  
Changjin Jiang ◽  
Ting Zhang ◽  
Shuhui Li ◽  
Zhaoguang Yang

Abstract Fe(III)-chitosan and Fe(III)-chitosan-CTAB composites were prepared using an ionotropic gelation method. Various techniques were used to analyze the morphology, structure, and property of the adsorbents, including SEM, EDS, FT-IR, XPS, and zeta potential. Compared with Fe(III)-chitosan, Fe(III)-chitosan-CTAB was more effective for As(V) adsorption at a wide range of pH (3–8). The adsorption of As(V) onto Fe(III)-chitosan and Fe(III)-chitosan-CTAB could reach equilibrium in 20 min, and their maximum adsorption capacities were 33.85 and 31.69 mg g‒1, respectively. The adsorption kinetics was best described by the pseudo-second-order model (R2=0.998 and 0.992), whereas the adsorption isotherms was fitted well by the Freundlich model (R2=0.963 and 0.987). The presence of H2PO4− significantly inhibited the adsorption of As(V) onto Fe(III)-chitosan and Fe(III)-chitosan-CTAB, and humic acid also led to a slight decrease in As(V) adsorption by Fe(III)-chitosan-CTAB. Over 94% of As(V) at the initial concentration of no more than 5 mg L−1 was removed from real water by the two adsorbents. 1% (w/v) NaOH solution was determined to be the most suitable desorption agent. Fe(III)-chitosan and Fe(III)-chitosan-CTAB still maintained their initial adsorption capacities after five adsorption-desorption cycles. Based on different characterization results, both electrostatic attraction and surface complexation mechanisms played important roles in As(V) adsorption on Fe(III)-chitosan and Fe(III)-chitosan-CTAB.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2295
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Hagar Morsy

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


2007 ◽  
Vol 18 (7) ◽  
pp. 887-890 ◽  
Author(s):  
Xing Hong Zhang ◽  
Shang Chen ◽  
Xian Ming Wu ◽  
Xue Ke Sun ◽  
Fei Liu ◽  
...  

2018 ◽  
Vol 2017 (1) ◽  
pp. 219-228
Author(s):  
Fengling Liu ◽  
Ziyan Guo ◽  
Hui Qiu ◽  
Xia Lu ◽  
Hua Fang ◽  
...  

Abstract Four kinds of mesoporous carbons, C1-h-w, C2-h-h, C3-s-w, and C4-s-h, with different pore geometries were prepared and characterised, and their adsorption behaviours with aqueous direct yellow 12 (DY-12) were investigated. The results of X-ray diffraction and transmission electron microscopy show that C1-h-w and C3-s-w have wormlike pore characteristics, whereas C2-h-h and C4-s-h have 2-D hexagonally arranged pores. According to the N2 adsorption/desorption results, the specific surface area of C1-h-w (1,378 m2/g) is the largest among the four carbons. The adsorption isotherms could be effectively fitted using the Langmuir model. The maximum adsorption amounts of C1-h-w, C2-h-h, C3-s-w and C4-s-h are 0.968 mmol/g, 0.726 mmol/g, 0.161 mmol/g and 0.156 mmol/g, respectively. The pseudo-second-order rate constants of C1-h-w (39.8 g/(mmol·min)) and C2-h-h (7.28 g/(mmol·min)) are substantially larger than those of C3-s-w (0.0046 g/(mmol·min)) and C4-s-h (0.014 g/(mmol·min)), indicating that an open and interconnected pore geometry is favourable for DY-12 adsorption. Furthermore, DY-12 diffusion in 2-D hexagonally ordered cylindrical pores is superior to that in wormlike pores due to the smoothness of the channels in the former. External mass transfer and intraparticle diffusion both play roles in the adsorption process.


Author(s):  
Jilin Zheng ◽  
Peng Zhao ◽  
Shiying Zhou ◽  
Sha Chen ◽  
Yi Liang ◽  
...  

Integrating metal-organic frameworks (MOFs) of different components or structures together and exploiting them as electrochemical sensors for electrochemical sensing have aroused great interest. And the incorporation of noble metals with...


2018 ◽  
Vol 9 (3) ◽  
pp. 169-176
Author(s):  
Thi Lan Phung ◽  
Thi Kim Giang Nguyen

Pure g-C3N4 and MoS2 modified g-C3N4 materials were synthesized using a facile heating method and a low-temperature hydrothermal method, respectively. The obtained samples were characterized by XRD pattern and N2 adsorption-desorption technique at 77K. The adsorption and photocatalytic performance of all obtained samples were investigated by discoloration of direct black 38 dye in the dark and under visible light irradiation. The results showed that all obtained samples exhibited good discoloration efficiency of direct black 38 dye. The two factors including pH values and Mo loading effected mainly on elimination efficiency of direct black 38 dye. MoS2 modified g-C3N4 materials possessed the more enhanced adsorption and photocatalytic performance in comparison to pure g-C3N4 at pH value of 3.5, with adsorbent dosage of 0.1 g/L. Furthermore, it was found that the adsorption process and photo-catalysis simultaneously occurred under visible light irradiation and followed up a pseudo-second-order kinetic reaction of Langmuir - Hinshelwood model. g-C3N4 và g-C3N4 biến tính bởi MoS2 đã được tổng hợp theo phương pháp nung đơn giản và phương pháp thủy nhiệt ở nhiệt độ thấp tương ứng. Các mẫu tổng hợp đã được đánh giá đặc trưng bởi các phương pháp hiện đại như giản đồ nhiễu xạ tia X, phương pháp hấp phụ-khử hấp phụ N2 ở 77K. Khả năng hấp phụ và quang hóa xúc tác của các vật liệu tổng hợp đã được nghiên cứu bởi quá trình phân hủy màu thuốc nhuộm direct black 38 trong điều kiện bóng tối và chiếu sáng bởi ảnh sáng nhìn thấy của đèn chiếu sáng sợi đốt wolfram (220V-100W). Các kết quả nghiên cứu chỉ ra rằng các mẫu tổng hợp đều có hiệu suất xử lý màu cao đối với thuốc nhuộm direct black 38. Hai yếu tố gồm pH dung dịch và hàm lượng MoS2 ảnh hưởng chính đến hiệu suất xử lý màu direct black 38. g-C3N4 biến tính bởi MoS2 luôn thể hiện hiệu suất hấp phụ và quang hóa cao hơn so với g-C3N4 tinh khiết. Hơn nữa, khi được chiếu sáng bởi ánh sáng nhìn thấy thì quá trình hấp phụ và quá trình quang hóa thuốc nhuộm direct black 38 trên các vật liệu tổng hợp đã xảy ra đồng thời và mô hình Langmuir - Hinshelwood động học bậc 2 đã được đề xuất cho quá trình này.


2021 ◽  
Vol 8 (3) ◽  
pp. 183-193
Author(s):  
M. Anugrah Rizky Pambudi ◽  
Nanda Prayogo ◽  
Muhammad Nadjib ◽  
Ratna Ediati

UiO-66, as one of the metal-organic framework (MOF) compounds, has been used to treat some anionic and cationic dye waste. In order to determine the adsorption selectivity decisively, the synthesis of UiO-66 and UiO-66 modulated with acetic acid had been carried out, along with their adsorption tests for Eriochrome Black T (EBT) dye solution. The synthesis was performed by utilizing a solvothermal method with the reaction mixtures of zirconium (IV) chloride (ZrCl4) and terephthalic acid (H2BDC) as a ligand heated at 120 oC for 24 hours. Both UiO-66 (without acetic acid) and acetic acid modulated UiO-66 were obtained as a white powder. Acetic acid as a modulator was added and being investigated for the adsorption capability compared to the normal UiO-66. This study showed that normal UiO-66 exhibited better adsorption than acetic acid modulated UiO-66 with a mmol ratio of acetic acid:ligand varied from 50:1, 100:1, and 150:1. Acetic acid modulated UiO-66 with a mmol ratio of 50 exhibited the best crystallinity as observed by using x-ray diffraction. It can be concluded that the adsorption of EBT using normal and acetic acid modulated UiO-66 obeyed the pseudo-second-order reaction rate law as well as the Langmuir adsorption isotherm pattern.


Author(s):  
Xiaochun Yin ◽  
Nadi Zhang ◽  
Meixia Du ◽  
Hai Zhu ◽  
Ting Ke

Abstract In this paper, a series of bio-adsorbents (LR-NaOH, LR-Na2CO3 and LR-CA) were successfully prepared by modifying Licorice Residue with NaOH, Na2CO3 and citric acid, which were used as the adsorbents to remove Cu2+ from wastewater. The morphology and structure of bio-adsorbents were characterized by Fourier Transform Infrared, SEM, TG and XRD. Using static adsorption experiments, the effects of the adsorbent dosage, the solution pH, the adsorption time, and the initial Cu2+ concentration on the adsorption performance of the adsorbents were investigated. The results showed that the adsorption process of Cu2+ by the bio-adsorbents can be described by pseudo-second order kinetic model and the Langmuir model. The surface structure of the LR-NaOH, LR-Na2CO3 and LR-CA changed obviously, and the surface-active groups increased. The adsorption capacity of raw LR was 21.56 mg/g, LR-NaOH, LR- Na2CO3 significantly enhanced this value up to 43.65 mg/g, 43.55 mg/g, respectively. After four adsorption-desorption processes, the adsorption capacity of LR-NaOH also maintained about 73%. Therefore, LR-NaOH would be a promising adsorbent for removing Cu2+ from wastewater, and the simple strategy towards preparation of adsorbent from the waste residue can be as a potential approach using in the water treatment.


Sign in / Sign up

Export Citation Format

Share Document