scholarly journals Spray-Drying Performance and Thermal Stability of L-Ascorbic Acid Microencapsulated with Sodium Alginate and Gum Arabic

Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2872 ◽  
Author(s):  
Pabla A. Barra ◽  
Katherine Márquez ◽  
Oscar Gil-Castell ◽  
Javiera Mujica ◽  
Amparo Ribes-Greus ◽  
...  

The potential of sodium alginate (ALG) and gum arabic (GA) as wall polymers for L-ascorbic acid (AA) encapsulation as a tool for their preservation against the thermo-oxidative degradation was investigated. The influence of such polymers used as wall material on the AA-content, size, encapsulation efficiency, encapsulation yield and thermo-oxidative stability were evaluated. The AA-microparticles were obtained using the spray-drying technique. An experimental Taguchi design was employed to assess the influence of the variables in the encapsulation process. The microparticles morphology and size distribution were characterized by scanning electron microscopy and laser diffraction. The thermal stability of AA microparticles was studied by differential scanning calorimetry and thermogravimetry analysis. This work points out the viability to encapsulate AA using GA and ALG through a spray-drying process. In general, a product yield ranging from 35.1% to 83.2% and an encapsulation efficiency above 90% were reached. Spherical microparticles with a smooth surface were obtained with a mean diameter around 6 μm and 9 μm for the those prepared with GA and ALG, respectively. The thermo-oxidative analysis showed that both polymers allow maintaining AA stable up to 188 °C, which is higher than the traditional processing temperature used in the fish feed industry.

Author(s):  
Pabla Barra ◽  
Katherine Márquez ◽  
Oscar Gil-Castell ◽  
Javiera Mujica ◽  
Amparo Ribes-Greus ◽  
...  

The potential of sodium alginate (ALG) and gum arabic (GA) as wall polymers for L-ascorbic acid (AA) encapsulation as a tool for their preservation against the thermo-oxidative degradation was investigated. The influence of such polymers used as wall material on the AA-content, size, encapsulation efficiency, encapsulation yield and thermo-oxidative stability were evaluated. The AA-microparticles were obtained using the spray-drying technique. An experimental Taguchi design was employed to assess the influence of the variables in the encapsulation process. The microparticles morphology and size distribution were characterized by scanning electron microscopy and laser diffraction. The thermal stability of AA microparticles was studied by differential scanning calorimetry and thermogravimetry analysis. This work points out the viability to encapsulate AA using GA and ALG through a spray-drying process. In general, a product yield ranging from 35.1% to 83.2% and an encapsulation efficiency above 90% was reached. Spherical microparticles with a smooth surface were obtained with a mean diameter around 6 μm and 9 μm for the those prepared with GA and ALG, respectively. The thermo-oxidative analysis showed that both polymers allow maintaining AA stable up to 188 °C, which is higher than the traditional processing temperature used in the fish feed industry.


2018 ◽  
Vol 111 ◽  
pp. 846-855 ◽  
Author(s):  
Diego Santiago Tupuna ◽  
Karina Paese ◽  
Silvia Stanisçuaski Guterres ◽  
André Jablonski ◽  
Simone Hickmann Flôres ◽  
...  

2015 ◽  
Vol 11 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yen Yi Hee ◽  
Chin Ping Tan ◽  
Russly Abdul Rahman ◽  
Noranizan Mohd Adzahan ◽  
Wee Ting Lai ◽  
...  

Abstract The main objective of this study was to evaluate the influence of the different wall material combinations on the microencapsulation of virgin coconut oil (VCO) by spray drying. Maltodextrin (MD) and sodium caseinate (SC) were used as the basic wall materials and mixed with gum Arabic (GA), whey protein concentrate (WPC) and gelatin (G). The stability, viscosity and droplet size of the feed emulsions were measured. MD:SC showed the best encapsulation efficiency (80.51%) and oxidative stability while MD:SC:GA presented the lowest encapsulation efficiency (62.93%) but better oxidative stability than the other two combinations. Microcapsules produced were sphere in shape with no apparent fissures and cracks, low moisture content (2.35–2.85%) and high bulk density (0.23–0.29 g/cm3). All the particles showed relatively low peroxide value (0.34–0.82 meq peroxide/kg of oil) and good oxidative stability during storage. MD:SC:GA microencapsulated VCO had the highest antioxidant activity in both of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) (0.22 mmol butylated hydroxyanisole (BHA)/kg of oil) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays (1.35 mmol trolox/kg of oil).


2016 ◽  
Vol 06 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ferrándiz Marcela ◽  
Capablanca Lucía ◽  
Franco Esther ◽  
Mira Elena

2020 ◽  
Vol 859 ◽  
pp. 271-276
Author(s):  
Teerawat Boonsom ◽  
Ekachai Dumkliang

Microencapsulation by spray drying is offered to prevent volatilization or degradation of lemongrass essential oil as food additives and ingredients in traditional medicines. In this process, oil is contained in microcapsules by enclosing with wall material. Although gum arabic is commonly used according to its encapsulation efficiency and stability, its cost is more expensive. This experiment used cassava starch for wall material because it was cheaper than gum and could get optimized condition for microencapsulation of lemongrass essential oil. The 3 factors of microcapsulation consisting of the mass ratio of CS:GA, mass ratio of wall: core materials, and inlet temperatures were optimized for maximum response, the process yield (PY) and encapsulation efficiency (EE) using response surface methodology. The results concluded that the highest weight replacement of cassava starch and gum arabic at 2.4:1, wall:core ratio 3.4-4.0:1 with inlet air temperature about 180 °C for spray drying was the optimal condition for was higher than 70 % PY and 85 % EE.


2020 ◽  
Vol 23 ◽  
Author(s):  
Fabiana Helen dos Santos ◽  
Bianca Marise Pereira e Silveira ◽  
Lourena Lopes de Souza ◽  
Anna Karolina Cruz Duarte ◽  
Milton Cosme Ribeiro ◽  
...  

Abstract The aim of this study was to assess the influence of the wall materials on the microencapsulation of pequi oil. An emulsion containing pequi oil in the oil phase was microencapsulated by spray drying process at 120 °C using gum Arabic, maltodextrin, or a 25:75 (w/w) mixture of gum Arabic and maltodextrin as wall material. The emulsions were characterized for droplet size, Polydispersity Index (PDI), and zeta potential. Pequi oil microparticles were analyzed for moisture content, water activity, wettability, encapsulation efficiency, antioxidant capacity, and color. Ultrastructural examination was performed by Scanning Electron Microscopy (SEM). The Droplet Size Distribution (DSD) of the emulsions exhibited a relatively wide size distribution (2.67 to 8.96 μm) and high PDI (> 0.3). Smooth microparticles with high encapsulation efficiency (79.17% to 84.20%), and good antioxidant capacity (28.20 to 28.71 μmol Trolox equivalents/g dry extract) were obtained. Microparticles prepared using gum Arabic as wall material had higher antioxidant capacity than that prepared with maltodextrin. All microparticles had satisfactory encapsulation efficiency, water activity, moisture content, and wettability. These results indicate that pequi oil microparticles have characteristics that can contribute to good stability during storage and handling of encapsulated oil. Therefore, pequi oil can be successfully encapsulated by spray drying using gum Arabic, maltodextrin, or 25:75 (w/w) mixture of gum Arabic and maltodextrin as wall materials, but the physicochemical properties of microparticles vary with wall material composition.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Luiz C. Corrêa-Filho ◽  
Maria M. Lourenço ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

Carotenoids are a class of natural pigments found mainly in fruits and vegetables. Among them,β-carotene is regarded the most potent precursor of vitamin A. However, it is susceptible to oxidation upon exposure to oxygen, light, and heat, which can result in loss of colour, antioxidant activity, and vitamin activity. Thus, the objective of this work was to study the microencapsulation process ofβ-carotene by spray drying, using arabic gum as wall material, to protect it against adverse environmental conditions. This was carried out using the response surface methodology coupled to a central composite rotatable design, evaluating simultaneously the effect of drying air inlet temperature (110-200°C) and the wall material concentration (5-35%) on the drying yield, encapsulation efficiency, loading capacity, and antioxidant activity. In addition, morphology and particles size distribution were evaluated. Scanning electron microscopy images have shown that the particles were microcapsules with a smooth surface when produced at the higher drying temperatures tested, most of them having a diameter lower than 10μm. The conditions that enabled obtaining simultaneously arabic gum microparticles with higherβ-carotene content, higher encapsulation efficiency, and higher drying yield were a wall material concentration of 11.9% and a drying inlet temperature of 173°C. The systematic approach used for the study ofβ-carotene microencapsulation process by spray drying using arabic gum may be easily applied for other core and wall materials.


Author(s):  
Gabriel Ribeiro Carvalho ◽  
Amanda Maria Teixeira Lago ◽  
Maria Cecília Evangelista Vasconcelos Schiassi ◽  
Priscila de Castro e Silva ◽  
Soraia Vilela Borges ◽  
...  

Abstract The objective of this work was to evaluate the partial replacement of gum arabic by modified starches on the spray-drying microencapsulation of lemongrass (Cymbopogon flexuosus) essential oil. The ultrasound-assisted emulsions were prepared with 30% (w/w) of wall material, 7.5% (w/w) of oil load, and 1:1 (w/w) replacement ratio for all treatments. After 16 hours, the incompatibility observed between gum arabic and octenyl succinic anhydride (OSA) starch did not affect the obtained microparticles, since the treatment with OSA starch, partially replacing gum arabic, showed the best results for the process yield and for the oil charge retention after spray-drying process, and the treatment showed Newtonian viscosity close to that of the treatment prepared with gum arabic. Maltodextrin dextrose equivalent 10 (10DE) shows an oil load similar to that of the treatment with gum arabic, while the presence of maize maltodextrin DE20 reduces the content of encapsulated oil and the efficiency of the drying process due to the adherence of particles to the chamber. Therefore, the partial substitution of gum arabic is an alternative for the formation of emulsions, for the spray-drying microencapsulation of lemongrass essential oil.


Sign in / Sign up

Export Citation Format

Share Document