scholarly journals Pharmacokinetics and Tissue Distribution of Alnustone in Rats after Intravenous Administration by Liquid Chromatography-Mass Spectrometry

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3183 ◽  
Author(s):  
Yang Song ◽  
Yu Zhou ◽  
Xiao-Ting Yan ◽  
Jing-Bo Bi ◽  
Xin Qiu ◽  
...  

Alnustone, a nonphenolic diarylheptanoid, first isolated from Alnus pendula (Betulaceae), has recently received a great deal of attention due to its various beneficial pharmacological effects. However, its pharmacokinetic profile in vivo remains unclear. The purpose of this study is to establish a fast and sensitive quantification method of alnustone using liquid chromatography tandem mass spectrometry (LC-MS/MS) and evaluate the pharmacokinetic and tissue distribution profiles of alnustone in rats. The sample was precipitated with acetonitrile with 0.5% formic acid and separated on BEH C18 Column. The mobile phase was composed of 0.1% formic acid in water and methanol at a flow rate of 0.3 mL/min. Alnustone and the internal standard (caffeine) were quantitatively monitored with precursor-to-product ion transitions of m/z 262.9→105.2 and m/z 195.2→138.0, respectively. The calibration curve for alnustone was linear from 1 to 2000 ng/mL. The intra- and inter-day assay precision (RSD) ranged from 1.1–9.0 % to 3.3–8.6%, respectively and the intra- and inter-day assay accuracy (RE) was between −8.2–9.7% and −10.3–9.9%, respectively. The validated method was successfully applied to the pharmacokinetic studies of alnustone in rats. After single-dose intravenous administration of alnustone (5 mg/kg), the mean peak plasma concentration (Cmax) value was 7066.36 ± 820.62 ng/mL, and the mean area under the concentration-time curve (AUC0–t) value was 6009.79 ± 567.30 ng/mL∙h. Our results demonstrated that the residence time of alnustone in vivo was not long and it eliminated quickly from the rat plasma. Meanwhile, the drug is mainly distributed in tissues with large blood flow, and the lung and liver might be the target organs for alnustone efficacy. The study will provide information for further application of alnustone.

2005 ◽  
Vol 51 (3) ◽  
pp. 593-602 ◽  
Author(s):  
Olivier Nicolas ◽  
Christine Farenc ◽  
Michèle Calas ◽  
Henri J Vial ◽  
Françoise Bressolle

Abstract Background: A new class of antimalarial drugs targeting membrane biogenesis during intraerythrocytic Plasmodium falciparum development has been identified. The bisthiazolium salts T3 and T4 have superior in vitro and in vivo parasite-killing properties and need to be monitored. Methods: We used a liquid chromatography–electrospray ionization mass spectrometry method (positive mode) to quantify two bisthiazolium compounds (T3 and T4) and a related prodrug (TE4c) in human and rat plasma. Verapamil was used as internal standard. Verapamil and the TE4c compound were characterized by protonated molecules at m/z 455.7 and m/z 725.7, respectively. T3 and T4 were detected through two ions [M2+/2] at m/z 227.7 and m/z 241.8 and by their adducts with trifluoroacetic acid [M+TFA]+ at m/z 568 and m/z 596, respectively. The sample clean-up procedure involved solid-phase extraction. HPLC separation was performed on a reversed-phase column, using a water–acetonitrile gradient, with both solvents containing TFA. Stability under various conditions was also investigated. Results: The peak-area ratios (drugs/internal standard) were linked to concentrations (6.4–1282 μg/L for T3; 6.5–1309.8 μg/L for T4; 20–2000 μg/L for TE4c) according to a quadratic equation. The accuracy ranged from 85% to 113.1%, and the imprecision from 2.2% to 15%. The mean extraction recoveries were 87%, 98%, and 80% for T3, T4, and TE4c, respectively. The lower limit of quantification was 6.4 μg/L for the two bisthiazolium compounds, whereas it was 20 μg/L for TE4c, the related lipophilic prodrug. Conclusion: This highly specific and sensitive method is suitable for analyzing samples collected during preclinical pharmacokinetic studies in rats and to determine the percentage binding of T3 and T4 to human plasma proteins.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1600 ◽  
Author(s):  
Essam Ezzeldin ◽  
Muzaffar Iqbal ◽  
Yousif A. Asiri ◽  
Azza A Ali ◽  
Prawez Alam ◽  
...  

Baricitinib, is a selective and reversible Janus kinase inhibitor, is commonly used to treat adult patients with moderately to severely active rheumatoid arthritis (RA). A fast, reproducible and sensitive method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantification of baricitinib in rat plasma has been developed. Irbersartan was used as the internal standard (IS). Baracitinib and IS were extracted from plasma by liquid–liquid extraction using a mixture of n-hexane and dichloromethane (1:1) as extracting agent. Chromatographic separation was performed using Acquity UPLC HILIC BEH 1.7 µm 2.1 × 50 mm column with the mobile phase consisting of 0.1% formic acid in acetonitrile and 20 mM ammonium acetate (pH 3) (97:3). The electrospray ionization in the positive-mode was used for sample ionization in the multiple reaction monitoring mode. Baricitinib and the IS were quantified using precursor-to-production transitions of m/z 372.15 > 251.24 and 429.69 > 207.35 for baricitinib and IS, respectively. The method was validated according to the recent FDA and EMA guidelines for bioanalytical method validation. The lower limit of quantification was 0.2 ng/mL, whereas the intra-day and inter-day accuracies of quality control (QCs) samples were ranged between 85.31% to 89.97% and 87.50% to 88.33%, respectively. Linearity, recovery, precision, and stability parameters were found to be within the acceptable range. The method was applied successfully applied in pilot pharmacokinetic studies.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 585 ◽  
Author(s):  
Aihua Huang ◽  
Yuguang Chi ◽  
Jiawei Liu ◽  
Mincun Wang ◽  
Jialiang Qin ◽  
...  

Zanthoxylum nitidum (Roxb.) DC (Rutaceae), called as “liangmianzhen” in China, is well known for its anti-inflammation and analgesic effect. Alkaloids are its main active constituents. However, little has been known about the absorption of main alkaloids in vivo. In this study, an ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was employed for identification of absorbed alkaloids in rats after oral administration of Z. nitidum decoction. By analyzing the fragmentation patterns, a total of nineteen alkaloids were exactly or tentatively identified in rat plasma after treatment, of which magnoflorine, α-allocryptopine, and skimmianine are dominant. Moreover, a high performance liquid chromatography coupled mass spectrometry method was developed for simultaneous quantification of magnoflorine, α-allocryptopine, and skimmianine, and successfully applied to pharmacokinetic study in rats after oral administration of Z. nitidum decoction. The research would contribute to comprehensive understanding of the material basis and function mechanism of Z. nitidum decoction.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Nagaraju ◽  
Y. A. Chowdary ◽  
M. V. Basaveswara Rao

Abstract Background The aim of this study was to develop and validate accurate and precise UPLC method with tandem mass spectrometry (Waters) for the determination of bexarotene in human plasma using bexarotene D4 as internal standard (IS). Results The retention time of bexarotene was 2.75 ± 0.30 min. The method was validated with respect to system suitability, linearity, accuracy, precision, matrix effect, auto sampler carryover test, and recovery. Linearity was found to be 1.04 to 351.93 μg/mL. LOQQC, LQC, INTQC, MQC, and HQC were found to be 1.0550, 2.7800, 25.2700, 131.61, and 263.23 respectively. The mean percentage recovery was found to be 95.72% Conclusion The bioanalytical method, a selective and sensitive liquid chromatography-mass spectrometry method to quantitate bexarotene in K2EDTA human plasma over the concentration range 1.0440 to 351.9320 ng/mL, was successfully validated. This method is suitable for sample analysis to support bioequivalence/bioavailability and/or pharmacokinetic studies involving formulations of bexarotene.


Author(s):  
Gang Li ◽  
Shuofu Liang ◽  
Kesen Qiao ◽  
Chao Wang

Abstract Background AZD3264 is a small molecule inhibitor of selective IkB-kinase IKK2 currently in preclinical development for the potential treatment of asthma and chronic pulmonary obstructive disorder. Objective A method for the quantitative analysis of AZD3264 was established and optimized by using HPLC tandem mass spectrometry in dog plasma. Method Plasma samples were pretreated using a solvent-induced phase transition extraction method with a methanol solution of omeprazole as the internal standard. Chromatographic separation was performed using a Thermo Hypersil GOLD-C18 (50 mm × 4.6 mm, 3 μm) column with the temperature maintained at 25°C. Mobile phase consisted of 0.1% formic acid in water and acetonitrile in a gradient mode at a flow rate of 0.6 mL/min. Mass spectrometric detection was carried out in selected reaction monitoring mode with positive electrospray ionization, and the mass transitions of AZD3264 and omeprazole were m/z 442.1 → 425.0 and m/z 346.0 → 198.0, respectively. Results The intra-batch accuracy was within 95.11–105.06% and the precision was within 6.50–9.98%. The inter-batch accuracy was within 96.83–102.80% with a precision of 7.62–9.50%. The selectivity, sensitivity, linearity, dilution linearity, extraction recovery and matrix effect, stability, and carry-over met all requirements of the guidelines for bioanalytical method validation. AZD3264 showed linear pharmacokinetic characteristics following intravenous administration to dogs at 0.3–2.7 mg/kg. Conclusions The developed and validated method was successfully employed in pharmacokinetic studies in dogs following intravenous administration at the doses of 0.3, 0.9, and 2.7 mg/kg. Highlights This was the first investigation of the in vivo pharmacokinetic characteristics of AZD3264 in dogs by LC-MS/MS with SIPTE method for plasma sample preparation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Wei Chen ◽  
Yafei Shi ◽  
Shuya Qi ◽  
Haiyan Zhou ◽  
Chunyu Li ◽  
...  

In the present study, we developed and validated a rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of lorlatinib in mouse serum and tissue samples, and such a method was successfully applied to investigate the pharmacokinetic study and tissue distribution of lorlatinib after oral administration. Samples were processed with methanol to precipitate protein and extract drugs, and Afatinib-d6 was used as the internal standard (IS). For LC-MS/MS analysis, compounds were separated on a C18 column by gradient elution (0.1% of formic acid and methanol) at 0.5 mL/min in the positive-ion mode with m/z 407.28 [M + H]+ for lorlatinib and m/z 492.10 [M + H]+ for IS. Good linearity was observed within the calibration ranges. Selectivity, accuracy (−6.42% to 8.84%), precision (1.69% to 10.98%), recoveries (91.4% to 115.0%), and matrix effect (84.2% to 110.6%) were all within the acceptable ranges. After oral administration, serum concentration of lorlatinib quickly achieved the maximal concentration (2,705.683 ± 539.779 μg/L) at 0.625 ± 0.231 h. The highest concentration was detected in the liver (3,153.93 ng/100 mg), followed by the stomach (2,159.92 ng/100 mg) and the kidney (548.83 ng/100 mg). In conclusion, a simple and rapid detection method was established and validated for determination of lorlatinib in blood and tissue samples of mouse. The pharmacokinetic study and tissue distribution of lorlatinib were successfully investigated using this method.


2020 ◽  
Vol 7 (2) ◽  
pp. 191666
Author(s):  
Lu Yu ◽  
Xu Chen ◽  
Wen Sheng Zhang ◽  
Liang Zheng ◽  
Wen Wen Xu ◽  
...  

ET-26-HCl, a novel anaesthetic agent with promising pharmacological properties, lacks extensive studies on pharmacokinetics and disposition in vitro and in vivo . In this study, we investigated the metabolic stability, metabolite production and plasma protein binding (PPB) of ET-26-HCl along with its tissue distribution, excretion and pharmacokinetics in animals after intravenous administration. Ultra-high performance liquid chromatography–tandem quadrupole time-of-flight mass spectrometry identified a total of eight new metabolites after ET-26-HCl biotransformation in liver microsomes from different species. A hypothetical cytochrome P450-metabolic pathway including dehydrogenation, hydroxylation and demethylation was proposed. The PPB rate was highest in mouse and lowest in human. After intravenous administration, ET-26-HCl distributed rapidly to all tissues in rats and beagle dogs, with the highest concentrations in fat and liver. High concentrations of ET-26-acid, a major hydroxylation metabolite of ET-26-HCl, were found in liver, plasma and kidney. Almost complete clearance of ET-26-HCl from plasma occurred within 4 h after administration. Only a small fraction of the parent compound and its acid form were excreted via the urine and faeces. Taken together, the results added to a better understanding of the metabolic and pharmacokinetic properties of ET-26-HCl, which may contribute to the further development of this drug.


Sign in / Sign up

Export Citation Format

Share Document