scholarly journals Cytotoxicity against HL60 Cells of Ficifolidione Derivatives with Methyl, n-Pentyl, and n-Heptyl Groups

Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4081
Author(s):  
Hisashi Nishiwaki ◽  
Megumi Ikari ◽  
Satomi Fujiwara ◽  
Kosuke Nishi ◽  
Takuya Sugahara ◽  
...  

Ficifolidione, a natural insecticidal compound isolated from the essential oils of Myetaceae species, is a spiro phloroglucinol with an isobutyl group at the C-4 position. We found that ficifolidione showed cytotoxicity against cancer cells via apoptosis. Replacement of the isobutyl group by n-propyl group did not influence the potency, but the effect of the replacement of this group by a shorter or longer alkyl group on the biological activity remains unknown. In this study, ficifolidione derivatives with alkyl groups such as methyl, n-pentyl, and n-heptyl group—instead of the isobutyl group at the C-4 position—were synthesized to evaluate their cytotoxicity against the human promyelocytic leukaemia cell line HL60 and their insecticidal activity against mosquito larvae. The biological activities of their corresponding 4-epimers were also evaluated. As a result, the conversion of the isobutyl group to another alkyl group did not significantly influence the cytotoxicity or insecticidal activity. In HL60 cells treated with the n-heptyl-ficifolidione derivative, the activation of caspase 3/7 and the early stages of apoptosis were detected by using immunofluorescence and flow cytometric techniques, respectively, suggesting that the cytotoxicity should be induced by apoptosis even though the alkyl group was changed.

1991 ◽  
Vol 7 (3) ◽  
pp. 185-195 ◽  
Author(s):  
M. E. Hayes ◽  
D. Bayley ◽  
E. B. Mawer

ABSTRACT The constitutive expression of 25-hydroxyvitamin D3-24-hydroxylase (25-(OH)D3-24-hydroxylase) activity has been studied in an adherent variant (Ad-HL60) of the human promyelomonocytic leukaemia cell line HL60. The Ad-HL60 cells have a more differentiated phenotype than the non-adherent cells from which they were derived, and synthesized 1.88±0.07 (±s.e.m.) pmol 24,25-(OH)2D3/h per 106 cells following culture in RPMI-1640 medium containing <0.02 nm 1α,25-(OH)2D3. They also synthesized 1.66±0.05 pmol 24,25-(OH)2D3/h per 106 cells following culture in 1α,25-(OH)2D3-free medium supplemented with 1 g bovine serum albumin/l instead of 10% serum. In contrast, non-adherent HL60 cells required exposure to 10–100 nm 1α,25-(OH)2D3 to induce equivalent 24,25-(OH)2D3 synthesis. The 25-(OH)D3-24-hydroxylase expressed by Ad-HL60 cells had an apparent Michaelis constant of 1 μm and maximal rate of 20 pmol/h per 106 cells with substrate concentrations from 0.012 to 1.2 μm/incubation (5–500ng/ml). Furthermore, 24,25-(OH)2D3 synthesis was inhibited in a dose-dependent manner by ketoconazole (0.01–10 μm), suggesting that the enzyme is cytochrome P-450 dependent. Ad-HL60 cells expressed approximately 3500 specific receptors for 1α,25-(OH)2D3/cell with a dissociation constant of 40 pm. Following exposure to 0.1–100 nm 1α,25-(OH)2D3, Ad-HL60 cell proliferation was significantly inhibited compared with controls grown in medium containing <0.02 nm 1α,25-(OH)2D3 for 96h. Expression of 25-(OH)D3-24-hydroxylase was also inhibited in a dose- and time-dependent manner; however, expression of non-specific esterase was not induced. Both of these findings are contrary to those previously demonstrated for non-adherent HL60 cells, whereas the dose-dependent inhibition of cell proliferation by 1α,25-(OH)2D3 occurs in both adherent and non-adherent phenotypes. These observations on Ad-HL60 cells represent the first description of a cell type in which 1α,25-(OH)2D3 appears to inhibit 25-(OH)D3-24-hydroxylase activity. The Ad-HL60 cells also constitutively metabolized 1α,25-(OH)2D3 in a manner consistent with formation of 1α,24,25-(OH)3D3 without previous exposure to 1α,25-(OH)2D3. In contrast, many other cell types, including non-adherent HL60 cells, require exposure to 1α,25-(OH)2D3 to induce metabolism of 1α,25-(OH)2D3 to 1α,24,25-(OH)3D3, a reaction that represents the initial step for catabolism of 1α,25-(OH)2D3 to calcitroic acid.


1989 ◽  
Vol 17 (1) ◽  
pp. 65-74 ◽  
Author(s):  
C. Sutton ◽  
P. Depledge ◽  
L. Bawden ◽  
A. Carne ◽  
M. Meltzer ◽  
...  

2021 ◽  
Vol 14 (8) ◽  
pp. 750
Author(s):  
Zahira Tber ◽  
Mohammed Loubidi ◽  
Jabrane Jouha ◽  
Ismail Hdoufane ◽  
Mümin Alper Erdogan ◽  
...  

We report herein the evaluation of various pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amines as potential cytotoxic agents. These molecules were obtained by developing the multicomponent Groebke–Blackburn–Bienaymé reaction to yield various pyrido[2′,1′:2,3]imidazo[4,5-c]quinolines which are isosteres of ellipticine whose biological activities are well established. To evaluate the anticancer potential of these pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amine derivatives in the human neuroblastoma cell line, the cytotoxicity was examined using the WST-1 assay after 72 h drug exposure. A clonogenic assay was used to assess the ability of treated cells to proliferate and form colonies. Protein expressions (Bax, bcl-2, cleaved caspase-3, cleaved PARP-1) were analyzed using Western blotting. The colony number decrease in cells was 50.54%, 37.88% and 27.12% following exposure to compounds 2d, 2g and 4b respectively at 10 μM. We also show that treating the neuroblastoma cell line with these compounds resulted in a significant alteration in caspase-3 and PARP-1 cleavage.


1982 ◽  
Vol 46 (3) ◽  
pp. 392-396 ◽  
Author(s):  
K Totsuka ◽  
K Oshimi ◽  
H Mizoguchi

Nature ◽  
1979 ◽  
Vol 278 (5702) ◽  
pp. 364-365 ◽  
Author(s):  
LEIF C. ANDERSSON ◽  
MIKKO JOKINEN ◽  
CARL G. GAHMBERG

2013 ◽  
Vol 37 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Patrícia Fontes Pinheiro ◽  
Vagner Tebaldi de Queiroz ◽  
Vando Miossi Rondelli ◽  
Adilson Vidal Costa ◽  
Tiago de Paula Marcelino ◽  
...  

The thrips, Frankliniella schultzei, and green peach aphid, Myzus persicae, cause direct damage to plants of economic importance and transmit phytoviruses, causing large economic losses. Chemical constituents of essential oils present a wide range of biological activities. The aim of this work was to evaluate insecticidal activity of essential oil from citronella grass, Cymbopogon winterianus, on F. schultzei and M. persicae. This essential oil was obtained by steam distillation and components were identified by GC/FID and GC/MS. A Potter spray tower was used to spray insects with the essential oil. The major constituents are geraniol (28.62%), citronellal (23.62%) and citronellol (17.10%). Essential oil of C. winterianus at 1% (w v-1) causes mortality in F. schultzei and M. persicae at 34.3% and 96.9%, respectively. The LC50 value for M. persicae was 0.36% and LC90 0.66%. Thus, citronella grass essential oil at 1% (w v-1) is more toxic to M. persicae than F. schultzei. This essential oil shows promise for developing pesticides to manage M. persicae.


2012 ◽  
Vol 84 (6) ◽  
pp. 1369-1378 ◽  
Author(s):  
Mikiko Sodeoka ◽  
Kosuke Dodo ◽  
Yuou Teng ◽  
Katsuya Iuchi ◽  
Yoshitaka Hamashima ◽  
...  

Chaetocin, a natural product isolated from fungi of Chaetomium species, is a member of the epipolythiodiketopiperazines (ETPs), which have various biological activities, including cytostatic and anticancer activities. Recently, the inhibitory activity toward histone methyltransferases (HMTs) was discovered for chaetocin. We previously reported the first total synthesis of chaetocin and various derivatives. During studies on the structure–activity relationship for HMT inhibition, we found that the enantiomer of chaetocin (ent-chaetocin) is a more potent apoptosis inducer than natural chaetocin in human leukemia HL-60 cells. Mechanistic studies showed that ent-chaetocin induces apoptosis through the caspase-8/caspase-3 pathway.


2010 ◽  
Vol 38 (03) ◽  
pp. 613-624 ◽  
Author(s):  
Guo-Guang Lou ◽  
Hang-Ping Yao ◽  
Li-Ping Xie

The potential molecular mechanism of Brucea javanica oil in the induction of apoptosis of T24 bladder cancer cells was investigated in vitro. T24 cells were divided into two groups: one, treated with B. javanica oil and the other, untreated. The cells were maintained in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum (FCS) and 4 mM glutamine. The morphological characteristics of T24 cells were examined microscopically at the 2nd and 5th day of the culture. The drug toxicity spectrum ( IC 50) was estimated by the MTT assay, and viability of T24 cells was assessed on the basis of the percentage of T24 apoptotic cells, as determined by Annexin/PI staining and flow cytometric analysis. The expression of caspase-3, capase-9, NF-κB p65, and COX-2 was analyzed by Western blotting. Morphological characteristics of the cells on the 2nd day showed apoptosis of the treated T24 cells; it was more apparent in the cells on the 5th day. B. javanica oil decreased the cell viability at the testing concentrations spectrum (5–0.156 mg/ml), and this viability was significantly higher as compared to the control group. In this concentration spectrum, B. javanica oil also induced apoptosis of T24 cells, which was analyzed by annexin/PI staining and flow cytometric analysis. These results were also statistically significant as compared to those of the control group. The expressions of caspase-3 and caspase-9 were low in the control T24 cells, while the expressions of NF-κB and COX-2 were high in normal T24 cells. Treatment with B. javanica oil significantly induced the expressions of caspase-3 and caspase-9 proteins in T24 cells, whereas the expressions of NF-κB and COX-2 proteins were inhibited. B. javanica oil significantly reduced the viability of T24 cells and induced T24 cell apoptosis. The molecular mechanism underlying these effects may be the activation of caspase apoptotic pathway by upregulation of the expression of caspase-3 and caspase-9 proteins and inhibition of the expression of NF-κB and COX-2 proteins.


Sign in / Sign up

Export Citation Format

Share Document