scholarly journals Perceptions and Misconceptions in Molecular Recognition: Key Factors in Self-Assembling Multivalent (SAMul) Ligands/Polyanions Selectivity

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1003
Author(s):  
Domenico Marson ◽  
Erik Laurini ◽  
Suzana Aulic ◽  
Maurizio Fermeglia ◽  
Sabrina Pricl

Biology is dominated by polyanions (cell membranes, nucleic acids, and polysaccharides just to name a few), and achieving selective recognition between biological polyanions and synthetic systems currently constitutes a major challenge in many biomedical applications, nanovectors-assisted gene delivery being a prime example. This review work summarizes some of our recent efforts in this field; in particular, by using a combined experimental/computation approach, we investigated in detail some critical aspects in self-assembled nanomicelles and two major polyanions—DNA and heparin.

2020 ◽  
Vol 8 (11) ◽  
pp. 3021-3025 ◽  
Author(s):  
Yihang Wu ◽  
Yue Xiong ◽  
Ling Wang ◽  
Quanming Zhou ◽  
Linxian Li ◽  
...  

A library of lipidoids self-assembling to liposomes exhibits excellent transfection efficiency in HEK 293T cells and mESCs with low cytotoxicity.


2014 ◽  
Vol 5 (15) ◽  
pp. 4431-4449 ◽  
Author(s):  
Jiban Jyoti Panda ◽  
Virander Singh Chauhan

Self-assembling peptides with many potential biomedical applications.


2016 ◽  
Vol 52 (23) ◽  
pp. 4257-4273 ◽  
Author(s):  
Eline Bartolami ◽  
Camille Bouillon ◽  
Pascal Dumy ◽  
Sébastien Ulrich

Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.


Nanomedicine ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 139-163
Author(s):  
Sonika Chibh ◽  
Jibanananda Mishra ◽  
Avneet Kour ◽  
Virander S Chauhan ◽  
Jiban J Panda

Molecular self-assembly is a widespread natural phenomenon and has inspired several researchers to synthesize a compendium of nano/microstructures with widespread applications. Biomolecules like proteins, peptides and lipids are used as building blocks to fabricate various nanomaterials. Supramolecular peptide self-assembly continue to play a significant role in forming diverse nanostructures with numerous biomedical applications; however, dipeptides offer distinctive supremacy in their ability to self-assemble and produce a variety of nanostructures. Though several reviews have articulated the progress in the field of longer peptides or polymers and their self-assembling behavior, there is a paucity of reviews or literature covering the emerging field of dipeptide-based nanostructures. In this review, our goal is to present the recent advancements in dipeptide-based nanostructures with their potential applications.


2021 ◽  
Vol 22 (23) ◽  
pp. 12662
Author(s):  
Sara La Manna ◽  
Concetta Di Natale ◽  
Valentina Onesto ◽  
Daniela Marasco

Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure’s stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.


2019 ◽  
Vol 48 (23) ◽  
pp. 5564-5595 ◽  
Author(s):  
Xiaoyuan Zhang ◽  
Coucong Gong ◽  
Ozioma Udochukwu Akakuru ◽  
Zhiqiang Su ◽  
Aiguo Wu ◽  
...  

Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


Sign in / Sign up

Export Citation Format

Share Document