scholarly journals Study on Cecropin B2 Production via Construct Bearing Intein Oligopeptide Cleavage Variants

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1005
Author(s):  
Yi-Ting Fang ◽  
Si-Yu Li ◽  
Nien-Jen Hu ◽  
Jie Yang ◽  
Jyung-Hurng Liu ◽  
...  

In this study, genetic engineering was applied to the overexpression of the antimicrobial peptide (AMP) cecropin B2 (cecB2). pTWIN1 vector with a chitin-binding domain (CBD) and an auto-cleavage Ssp DnaB intein (INT) was coupled to the cecB2 to form a fusion protein construct and expressed via Escherichia coli ER2566. The cecB2 was obtained via the INT cleavage reaction, which was highly related to its adjacent amino acids. Three oligopeptide cleavage variants (OCVs), i.e., GRA, CRA, and SRA, were used as the inserts located at the C-terminus of the INT to facilitate the cleavage reaction. SRA showed the most efficient performance in accelerating the INT self-cleavage reaction. In addition, in order to treat the INT as a biocatalyst, a first-order rate equation was applied to fit the INT cleavage reaction. A possible inference was proposed for the INT cleavage promotion with varied OCVs using a molecular dynamics (MD) simulation. The production and purification via the CBD-INT-SRA-cecB2 fusion protein resulted in a cecB2 yield of 58.7 mg/L with antimicrobial activity.

2011 ◽  
Vol 183-185 ◽  
pp. 947-951 ◽  
Author(s):  
Yu Zhen Song ◽  
Ping Ping Li ◽  
Ye Jie Du

BjMT2 cDNA clone gene isolated from Brassica juncea was constructed in pETM-20 and expressed in E.coli as a TrxA::BjMT2 fusion protein. After affinity chromatography and cleavage from the TrxA domain, pure BjMT2 protein was obtained which strongly reacted with the thiol reagent monobromobimane. The amino acid sequence determined by mass spectrograph revealed the polypeptide contains 80 amino acids and is full of 8 and 6 cysteines with CC, CXC and C-XX-C motifs clustered near -N and -C terminus, respectively.


2003 ◽  
Vol 185 (13) ◽  
pp. 3821-3827 ◽  
Author(s):  
Elisabeth Enggist ◽  
Linda Thöny-Meyer

ABSTRACT CcmE is a heme chaperone active in the cytochrome c maturation pathway of Escherichia coli. It first binds heme covalently to strictly conserved histidine H130 and subsequently delivers it to apo-cytochrome c. The recently solved structure of soluble CcmE revealed a compact core consisting of a β-barrel and a flexible C-terminal domain with a short α-helical turn. In order to elucidate the function of this poorly conserved domain, CcmE was truncated stepwise from the C terminus. Removal of all 29 amino acids up to crucial histidine 130 did not abolish heme binding completely. For detectable transfer of heme to type c cytochromes, only one additional residue, D131, was required, and for efficient cytochrome c maturation, the seven-residue sequence 131DENYTPP137 was required. When soluble forms of CcmE were expressed in the periplasm, the C-terminal domain had to be slightly longer to allow detection of holo-CcmE. Soluble full-length CcmE had low activity in cytochrome c maturation, indicating the importance of the N-terminal membrane anchor for the in vivo function of CcmE.


2001 ◽  
Vol 183 (21) ◽  
pp. 6365-6371 ◽  
Author(s):  
Kwang-Hwan Jung ◽  
Elena N. Spudich ◽  
Vishwa D. Trivedi ◽  
John L. Spudich

ABSTRACT Halophilic archaea, such as Halobacterium salinarumand Natronobacterium pharaonis, alter their swimming behavior by phototaxis responses to changes in light intensity and color using visual pigment-like sensory rhodopsins (SRs). In N. pharaonis, SRII (NpSRII) mediates photorepellent responses through its transducer protein, NpHtrII. Here we report the expression of fusions of NpSRII and NpHtrII and fusion hybrids with eubacterial cytoplasmic domains and analyze their function in vivo in haloarchaea and in eubacteria. A fusion in which the C terminus of NpSRII is connected by a short flexible linker to NpHtrII is active in phototaxis signaling for H. salinarum, showing that the fusion does not inhibit functional receptor-transducer interactions. We replaced the cytoplasmic portions of this fusion protein with the cytoplasmic domains of Tar and Tsr, chemotaxis transducers from enteric eubacteria. Purification of the fusion protein from H. salinarum and Tar fusion chimera from Escherichia coli membranes shows that the proteins are not cleaved and exhibit absorption spectra characteristic of wild-type membranes. Their photochemical reaction cycles in H. salinarum and E. coli membranes, respectively, are similar to those of native NpSRII in N. pharaonis. These fusion chimeras mediate retinal-dependent phototaxis responses by Escherichia coli, establishing that the nine-helix membrane portion of the receptor-transducer complex is a modular functional unit able to signal in heterologous membranes. This result confirms a current model for SR-Htr signal transduction in which the Htr transducers are proposed to interact physically and functionally with their cognate sensory rhodopsins via helix-helix contacts between their transmembrane segments.


2000 ◽  
Vol 182 (13) ◽  
pp. 3726-3733 ◽  
Author(s):  
Claus T. Lattemann ◽  
Jochen Maurer ◽  
Elke Gerland ◽  
Thomas F. Meyer

ABSTRACT Members of the protein family of immunoglobulin A1 protease-like autotransporters comprise multidomain precursors consisting of a C-terminal autotransporter domain that promotes the translocation of N-terminally attached passenger domains across the cell envelopes of gram-negative bacteria. Several autotransporter domains have recently been shown to efficiently promote the export of heterologous passenger domains, opening up an effective tool for surface display of heterologous proteins. Here we report on the autotransporter domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I), which was genetically fused to the C terminus of the periplasmic enzyme β-lactamase, leading to efficient expression of the fusion protein in E. coli. The β-lactamase moiety of the fusion protein was presented on the bacterial surface in a stable manner, and the surface-located β-lactamase was shown to be enzymatically active. Enzymatic activity was completely removed by protease treatment, indicating that surface display of β-lactamase was almost quantitative. The periplasmic domain of the outer membrane protein OmpA was not affected by externally added proteases, demonstrating that the outer membranes of E. coli cells expressing the β-lactamase AIDA-I fusion protein remained physiologically intact.


Author(s):  
Quang Kien Huynh ◽  
An Hoang Nguyen ◽  
Quynh Thi Mong Pham ◽  
Hoan Phuoc Khai Nguyen ◽  
Hieu Van Tran

Oral vaccine is a strategy being the most interested about treatments of gastrointestinal infections because of many great benefits outweigh conventional injection vaccines. In order to resolve the dispersion of antigens in gastrointestinal surfaces, the immunological tolerance and also be capable to stimulate immune responses effectively, M cells are targeted for antigens delivery. A number of researches reported that 30 amino acids in C terminus of Clostridium perfringens toxin (CPE30) have a high affinity to Claudin-4 receptor presenting on M cells. It is highly indispensable to produce a resource for assessing of CPE30 binding ability so cpe30 gene was cloned into the pET-gfp plasmid by two restriction enzymes BamHI and NdeI on the E. coli DH5α strain. The expression and confirmation of the fusion protein CPE30-GFP which was induced by IPTG in E. coli BL21 (DE3) strain and assessed by SDS-PAGE and Western blot with 6xHis Taq antibody demonstrated that there was the over expression of CPE30 GFP fusion protein in the cytoplasm, mainly in the soluble form. Finally, CPE30-GFP was purified which the purity was approximately 92.3%. In vitro protein interaction measurement using silicon nanowire field-effect transistors (SiNW FETs) showed that CPE30-GFP had a good binding affinity with its receptor Claudin-4 (R4). This result laid the groundwork for the CPE30 interaction study with the M cell in vivo.


2012 ◽  
Vol 59 (3) ◽  
Author(s):  
Paweł Filipkowski ◽  
Olga Pietrow ◽  
Anna Panek ◽  
Józef Synowiecki

A trehalose synthase gene from Deinococcus radiodurans (DSMZ 20539) containing 1659 bp reading frame encoding 552 amino acids was amplified using PCR. The gene was finally ligated into pET30Ek/LIC vector and expressed after isopropyl β-d-thiogalactopyranoside induction in Escherichia coli (DE3) Rosetta pLysS. The recombinant trehalose synthase (DraTreS) containing a His(6)-tag at the C-terminus was purified by metal affinity chromatography and characterized. The expressed enzyme is a homodimer with molecular mass of 126.9 kDa and exhibits the highest activity of 11.35 U/mg at pH 7.6 and at 30°C. DraTreS activity was almost unchanged after 2 h preincubation at 45°C and pH 7.6, and retained about 56% of maximal value after 8 h incubation at 50°C. The DraTreS was strongly inhibited by Cu(2+), Hg(2+), Zn(2+), Al(3+) and 10 mM Tris. The K(m) value of maltose conversion was 290.7 mM.


2009 ◽  
Vol 191 (15) ◽  
pp. 4996-5009 ◽  
Author(s):  
Dirk Tischler ◽  
Dirk Eulberg ◽  
Silvia Lakner ◽  
Stefan R. Kaschabek ◽  
Willem J. H. van Berkel ◽  
...  

ABSTRACT Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His10-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.


2002 ◽  
Vol 9 (6) ◽  
pp. 1200-1204 ◽  
Author(s):  
Susana N. Diniz ◽  
Kátia C. Carvalho ◽  
Patrícia S. Cisalpino ◽  
José F. Silveira ◽  
Luiz R. Travassos ◽  
...  

ABSTRACT gp43 is the major diagnostic antigen of Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis (PCM) in humans. In the present study, cDNA of the gp43 gene (PbGP43) was obtained by reverse transcriptase PCR, inserted into a pGEX vector in frame with the glutathione S-transferase (GST) gene, and expressed in Escherichia coli as inclusion bodies. Immunoblotting showed that all sera from patients with chronic pulmonary and acute lymphatic forms of PCM reacted with the recombinant fusion protein of the mature gp43 (381 amino acids). Reactivity with fusion proteins containing subfragments of the N-terminal, internal, or C-terminal regions occurred eventually, and the C-terminal region was the most antigenic. Lack of reactivity with the subfragments may be due to the conformational nature of the gp43 epitopes. Sera from patients with aspergillosis, candidiasis, and histoplasmosis did not react with the gp43-GST fusion protein. Our results suggest that recombinant gp43 corresponding to the processed antigen can be a useful tool in the diagnosis of PCM.


2017 ◽  
Vol 28 (18) ◽  
pp. 2420-2433 ◽  
Author(s):  
Yuqing Hou ◽  
George B. Witman

Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter.


1991 ◽  
Vol 277 (3) ◽  
pp. 593-596
Author(s):  
J C Brown ◽  
J H Spragg ◽  
P W Taylor

We have raised a panel of monoclonal antibodies against a beta-galactosidase fusion protein (XLB2.1) containing the C-terminal 153 amino acids of the murine laminin B2 subunit. Five of the nine antibodies characterized recognize human placental laminin as well as murine Engelbreth-Holm-Swarm (EHS)-tumour laminin. Only two of the antibodies recognize both rat parietal-yolk-sac laminin and murine EHS-tumour laminin. Two antibodies recognize an epitope on the human laminin B2 subunit which is masked by N-linked oligosaccharide in murine EHS-tumour laminin. These antibodies also fail to bind to laminin from adult-mouse tissues. These results demonstrate a species-specific difference in the glycosylation of the laminin B2 subunit.


Sign in / Sign up

Export Citation Format

Share Document