scholarly journals Evaluation of Volatile Compounds in Milks Fermented Using Traditional Starter Cultures and Probiotics Based on Odor Activity Value and Chemometric Techniques

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1129
Author(s):  
Li Zhang ◽  
Si Mi ◽  
Ruobing Liu ◽  
Yaxin Sang ◽  
Xianghong Wang

The volatile components of milks fermented using traditional starter cultures (Streptococcus thermophilus and Lactobacillus bulgaricus) and probiotics (Lactobacillus lactis, Lactobacillus bifidus, Lactobacillus casei, and Lactobacillus plantarum) were investigated by means of gas chromatography-mass spectrometry (GC-MS) combined with simultaneous distillation extraction (SDE). A total of 53 volatile compounds were detected, being 10 aldehydes, 11 ketones, 10 acids, 11 hydrocarbons, 7 benzene derivatives, and 4 other compounds. The starter culture was found to significantly affect the composition of volatile components in the fermented milks. Ketones and hydrocarbons were the dominant compounds in milk before fermentation, while acids were dominant compounds in the fermented samples. Compared with probiotics, there was greater abundance of volatile components in fermented milks with traditional strains. The importance of each volatile compound was assessed on the basis of odor, thresholds, and odor activity values (OAVs). Of the volatile compounds, 31 of them were found to be odor-active compounds (OAV > 1). The component with the highest OAVs in most samples was (E,E)-2,4-decadienal. Heatmap analysis and principal component analysis were employed to characterize the volatile profiles of milks fermented by different starter cultures. The results could help to better understand the influence of starter cultures on the odor quality of milks.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Li Zhang ◽  
Si Mi ◽  
Ruo-bing Liu ◽  
Ya-xin Sang ◽  
Xiang-hong Wang

The volatile composition of yogurt produced by Streptococcus thermophilus fermentation at different time points was investigated by gas chromatography-mass spectrometry combined with simultaneous distillation and extraction. A total of 53 volatile compounds including 11 aldehydes, 10 ketones, 8 acids, 7 benzene derivatives, 13 hydrocarbons, and 4 other compounds were identified in all of the samples. Ketones and hydrocarbons were the predominant volatile components in the early stage, whereas acids were the predominant volatiles in the late stage. The importance of each volatile was evaluated based on odor, threshold, and odor activity values (OAVs). Twenty-nine volatiles were found to be odor-active compounds (OAV > 1), among which (E, E)-2,4-decadienal had the highest OAV (14623–22278). Other aldehydes and ketones such as octanal, dodecanal, 2-nonen-4-one, and 2-undecanone also showed high odor intensity during fermentation. Heat map analysis was employed to evaluate the differences during fermentation. The results demonstrated that the volatile profile based on the content and OAVs of volatile compounds enables the good differentiation of yogurt during fermentation.


2020 ◽  
Vol 8 (10) ◽  
pp. 1586 ◽  
Author(s):  
Nikola Popović ◽  
Emilija Brdarić ◽  
Jelena Đokić ◽  
Miroslav Dinić ◽  
Katarina Veljović ◽  
...  

Yogurt is a traditional fermented dairy product, prepared with starter cultures containing Streptococcus thermophilus and Lactobacillus bulgaricus that has gained widespread consumer acceptance as a healthy food. It is widely accepted that yogurt cultures have been recognized as probiotics, due to their beneficial effects on human health. In this study, we have characterized technological and health-promoting properties of autochthonous strains S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 isolated from artisanal sour milk and yogurt, respectively, in order to be used as functional yogurt starter cultures. Both BGKMJ1-36 and BGVLJ1-21 strains have the ability to form curd after five hours at 42 °C, hydrolyze αs1-, β-, and κ- casein, and to show antimicrobial activity toward Listeria monocytogenes. The strain BGKMJ1-36 produces exopolysaccharides important for rheological properties of the yogurt. The colonies of BGKMJ1-36 and BGVLJ1-21 strains that successfully survived transit of the yogurt through simulated gastrointestinal tract conditions have been tested for adhesion to intestinal epithelial Caco-2 cells. The results reveal that both strains adhere to Caco-2 cells and significantly upregulate the expression of autophagy-, tight junction proteins-, and anti-microbial peptides-related genes. Hence, both strains may be interesting for use as a novel functional starter culture for production of added-value yogurt with health-promoting properties.


2020 ◽  
Vol 58 (2) ◽  
pp. 128-137
Author(s):  
Deni Kostelac ◽  
Ivančica Delaš ◽  
Jadranka Frece ◽  
Marko Jelić ◽  
Iva Čanak ◽  
...  

Research background. Cheese in a sack is a traditional cheese produced in Croatia. Types of cheese with similar production technology are made in other countries but chemical and microbiological composition varies between regions. Traditionally, cheese in a sack is produced without the addition of starter cultures. Addition of beneficial probiotic cultures to numerous dairy products has documented advantages. Effects that the addition of probiotic bacteria to traditional cheese have on aroma compounds and sensory properties have not been fully investigated. The aim of this study is to determine the sensory properties and differences in the aromatic profiles between cheese samples ripened in a lambskin sack, produced traditionally without the addition of any starter culture, or with the addition of probiotic bacteria. Experimental approach. In this study, cheese in a sack was produced with the addition of probiotic cultures Lactobacillus plantarum B and L. lactis ssp. lactis S1. During ripening volatile aroma compounds were analysed with a solid-phase microextraction gas chromatography-mass spectrometry. Sensory properties were evaluated by trained tasters who are familiar with the traditional taste of the cheese from a sack. The results of aroma composition and taste scores were then compared using factorial and principal component analyses. Results and conclusions. Chromatography showed differences in the composition of aroma compounds and the sensory properties between the cheese produced with Lactobacillus starter cultures and the control cheese, traditionally produced without a starter culture. The addition of probiotic cultures L. plantarum B and L. lactis ssp. lactis S1 resulted in products with better sensory properties and chemical profile of volatile aromatic compounds. Novelty and scientific contribution. This study investigates the usage of naturally present probiotic cultures as starter cultures in cheese in a sack production. Their effects on aroma profiles and sensory characteristics have been compared for the first time using factorial and principal component analyses.


2019 ◽  
Vol 8 (3) ◽  
pp. 103
Author(s):  
Calvince Anino ◽  
Arnold Onyango ◽  
Samuel Imathiu ◽  
Julius Maina

Fermented foods have in recent times attracted consumer interest mainly due to perceived health benefits of probiotic microorganisms. This study characterized changes in the concentrations of selected B-complex vitamins and oligosaccharides of common bean milk during fermentation by a common dairy starter culture, YF L-903 (Streptococcus thermophilus + Lactobacillus Bulgaricus subs Debulgaricus), and three probiotic cultures namely ABT (Lactobacillus acidophilus La-5 + Bifidobacterium animalis Bb-12 + Streptococcus thermophilus), Yoba (Lactobacillus rhamnosus yoba + Streptococcus thermophilus), and Yoba Fiti (Lactobacillus rhamnosus GR1 + Streptococcus thermophilus). Bean milk was prepared from three common bean varieties. It was found that, apart from thiamine (vitamin B1) and riboflavin (vitamin B2), fermentation with each of the mixed cultures caused significant increase in the vitamin B complex. Significant reductions (p<0.05) in the oligosaccharides concentration of the bean milks were observed upon fermentation. Highest reduction in the oligosaccharide sugars of 77.8% was found in milk from pinto bean variety fermented with ABT culture. These findings suggest that LAB probiotic cultures have a potential for improving biosynthesis of vitamins and removal of the verbascose, stachyose and raffinose oligosaccharides, thus making the product more digestible and the nutrients more bioavailable.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mingxiu Long ◽  
Min Liu ◽  
Yongfu Li ◽  
Zhuxi Tian ◽  
Yangbo He ◽  
...  

Abstract Marinated chicken wings is one of the popular marinated meat products in China. Here, electronic nose (e-nose) and solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) were used to detect volatile components of four different treatment marinated chicken wings (neither irradiated nor added phytic acid and tea polyphenols, A1; added phytic acid and tea polyphenols but no irradiated, A2; irradiated with 4 kGy irradiation but not added phytic acid and tea polyphenols, A3; irradiated with 4 kGy irradiation and added phytic acid and tea polyphenols, A4). Then odor activity value (OAV) and principal component analysis (PCA) were utilized to analyze their key flavor compounds. E-nose analysis found that antioxidant has a great impact on the odor of the marinated chicken wings, while the irradiation treatment has little effect on it. Besides, the irradiation treatment can reduce the unpleasant odor caused by antioxidants in certain. Through SPME-GC-MS, 101 volatile compounds were identified in four groups. After analysis, the antioxidants can inhibit the production of some volatile compounds, while irradiation treatment will relieve this phenomenon. This result is consistent with the e-nose. Following OAV, PCA analysis and sensory evaluation further verified the above conclusions.


2013 ◽  
Vol 781-784 ◽  
pp. 1852-1855 ◽  
Author(s):  
Wen Zheng Shi ◽  
Qing Yun Chen ◽  
Xi Chang Wang ◽  
Jin Qing Wan

In this paper, the dorsal meat of grass carp was used as research object. The volatile compounds of grass carp were extracted and concentrated by headspace solid phase micro-extraction (HS-SPME). Then the volatiles were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that SPME-GC-MS was effective to analysis of the volatiles in grass carp meat. According to GC-MS, 42 volatile compounds were detected in dorsal meat of grass carp. The volatile components are mostly carbonyl compounds and alcohols, and the relative contents are 95.74%. The method of odor activity value was applied to determine predominant volatile components of grass carp. There are 12 predominant components were determined in dorsal meat of grass carp, including: 1-Octen-3-ol, 2,6-Nonadienal, Nonanal, (E,E)-2,4-Decadienal, (E,Z)-2,4-Decadienal, Hexanal, 2-Nonenal, Octanal, 2-Decenal, Heptanal, Heptanol and 2-Octenal etc. The study will enrich the theoretical knowledge of flavor chemistry .


2017 ◽  
Vol 5 (3) ◽  
pp. 300-307 ◽  
Author(s):  
Alaa Niamah

The effect of adding Saccharomyces boulardii on yogurt quality was studied. Yogurt control was made using whole cow’s milk and classic starter culture. Other three treatments of yogurt were made by adding 1%,2% and 3% of Saccharomyces boulardii with yogurt starter. pH values and proteolytic activity of all yogurt treatments were determined during fermentation time. Changes in physicochemical and microbial properties of yogurt product were observed during storage time (21 days at 4°C). Yogurt samples with added yeast to starter cultures showed a slight increase in pH values during the 6 hours of fermentation. After fermentation time, pH and proteolytic activity of yogurt with 3% yeast were 4.05 and 250 μg/ml while control sample was 4.22 and 200 μg/ml respectively. pH, TN, WSN, TVFA and WHC values of yogurt with Saccharomyces boulardii were slightly increased whereas decreased the STS percentage compare with control yogurt without yeast during storage time. The addition of Saccharomyces boulardii improved the survivability of bacterial starter culture. After 21 day, Saccharomyces boulardii counts were 5.78, 6.01 and 6.31 Log. CFU/gm for yogurt with 1%,2% and 3% yeast respectively whereas Log. lactic acid bacteria of yogurt with 3% yeast was 7.53 and 7.55 for Lactobacillus bulgaricus and Streptococcus thermophilus.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hayriye Sekban ◽  
Zekai Tarakci

Purpose The purpose of this study was to investigate the chemical, textural and sensory properties of some starter cultures fruit-added Golot cheese. Design/methodology/approach Six types of Golot cheeses were produced in this study. While the control sample contained no starter cultures, five different starter culture combinations (GS1: Streptococcus thermophilus, Lactococcus lactis subsp. cremoris, L. lactis subsp. lactis and Lactobacillus bulgaricus; GS2: S. thermophilus and L. bulgaricus; GS3: S. thermophilus; GS4: S. thermophilus and Lactobacillus helveticus; and GS5: S. thermophilus, L. lactis subsp. cremoris and L. lactis subsp. lactis) were applied to the other cheese samples using an immersion technique. Then, all cheeses were vacuum-packed and ripened at 4 ± 1°C for three months and their chemical, biochemical, sensory and textural analyses were performed on the 2nd, 15th, 30th, 60th and 90th days of ripening. Findings Results indicated that generally starter cultures have positive effects on the chemical, biochemical and sensory properties of Golot cheese. Considering the final values, the addition of starter cultures enhanced the ripening index of Golot cheeses (8.4%–9.2%), except the GS3 (7.4%), compared to the control (8.1%). At the end of the ripening period, meltability values of GS4 (16.5 mm) cultured cheeses were higher than those of other cultured cheeses (13.0–15.5 mm) and control cheese (14.5 mm). While lipolysis values were low in fresh cheese, it increased during ripening. Overall, GS3 (2.46 acid degree value [ADV]) and GS4 (2.40 ADV) had the highest lipolysis rate, while GS1 (2.14 ADV) had the lowest (p = 0.07). Electrophoretograms indicated that the highest fragmentation of α- and ß-casein occurred in GS5 (48.43%) and GS1 (44.24%), respectively. Also, GS5 was the most appreciated and preferred cheese in terms of sensory. Regarding texture, hardness, cohesiveness, adhesiveness, springiness and gumminess values were determined to be statistically important in terms of ripening time and cheese variety (p < 0.01). Originality/value Consequently, all starters had a positive impact on Golot cheese samples and among all S. thermophilus and L. helveticus starter were determined to be the most applicable one considering ripening, texture, sensory and melting properties.


2021 ◽  
Vol 19 (1) ◽  
pp. 518-529
Author(s):  
Kai Wang ◽  
Bowen Ma ◽  
Tao Feng ◽  
Da Chen ◽  
Linyun Yao ◽  
...  

Abstract The aim of this work was to investigate the volatile compositions of four Chinese functional liquors. For this purpose, volatile compounds of four liquors were extracted with head-space solid-phase microextraction (HS-SPME) and analyzed with gas chromatography-mass spectrometry (GC-MS) along with the determination of odor activity value (OAV) and relative odor contribution (ROC). Sixty volatiles were tentatively identified and categorized into the following seven groups: alcohols, esters, fatty acids, carbonyl compound, hydrocarbons, phenols, and other components. The differences in chemical composition of volatile compounds were visualized with heat maps. Odorants were compared with different samples using a statistical analysis of Venn diagrams and a multivariate principal component analysis, and ethyl hexanoate, ethyl acetate, and ethyl octanoate were found to be the key odorants. Besides, abundant phenolic contents and high antioxidant ability of four Chinese functional liquors could potentially bring better health-boosting effects.


2020 ◽  
pp. 32-44
Author(s):  
Hanaa M. A. Salih ◽  
Mohamed O. M. Abdalla

Aims: This study was conducted to determine the effect of starter culture addition on the physicochemical, microbiological and sensory characteristics of white cheese (Gibna Bayda) during the storage period (5°C/ 45 days). Methodology: Two treatments were prepared: Treatment 1 (T1): cheese manufactured with pasteurized milk with Lactobacillus bulgaricus and Streptococcus thermophilus (1:1) at the level of 2% (w/v); Treatment 2 (T2): the control; cheese manufactured with pasteurized milk without starter cultures. After cheese manufacture, physicochemical, microbiological and sensory characteristics were determined at 1, 15, 30 and 45-day intervals. Results: Results showed that the starter culture addition did not significantly (P>.05) affect all physiochemical characteristics of cheese, except for the ash content which was high in cheese manufactured with the addition of starter culture. The addition of the starter influenced the microbiological quality of the cheese, with total viable bacteria, Staphylococcus aureus and yeasts and moulds counts being significantly (P<.05) low. Furthermore, the cheese made with an added starter culture showed high scores of colour, taste and flavour. The storage period significantly affected all characteristics of the cheese, except for the fat content of the control, which remained unchanged during all storage periods. Conclusion: The results of this study show that starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus) (1:1) is likely to be a suitable culture for Sudanese white cheese.


Sign in / Sign up

Export Citation Format

Share Document