scholarly journals Flexible and Reusable Ag Coated TiO2 Nanotube Arrays for Highly Sensitive SERS Detection of Formaldehyde

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1199 ◽  
Author(s):  
Tong Zhu ◽  
Hang Wang ◽  
Libin Zang ◽  
Sila Jin ◽  
Shuang Guo ◽  
...  

Quantitative analysis of formaldehyde (HCHO, FA), especially at low levels, in various environmental media is of great importance for assessing related environmental and human health risks. A highly efficient and convenient FA detection method based on surface-enhanced Raman spectroscopy (SERS) technology has been developed. This SERS-based method employs a reusable and soft silver-coated TiO2 nanotube array (TNA) material, such as an SERS substrate, which can be used as both a sensing platform and a degradation platform. The Ag-coated TNA exhibits superior detection sensitivity with high reproducibility and stability compared with other SERS substrates. The detection of FA is achieved using the well-known redox reaction of FA with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) at room temperature. The limit of detection (LOD) for FA is 1.21 × 10−7 M. In addition, the stable catalytic performance of the array allows the degradation and cleaning of the AHMT-FA products adsorbed on the array surface under ultraviolet irradiation, making this material recyclable. This SERS platform displays a real-time monitoring platform that combines the detection and degradation of FA.

Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 91 ◽  
Author(s):  
Natalia E. Markina ◽  
Alexey V. Markin

This report is dedicated to development of surface-enhanced Raman spectroscopy (SERS) based analysis protocol for detection of antibiotics in urine. The key step of the protocol is the pretreatment of urine before the detection to minimize background signal. The pretreatment includes extraction of intrinsic urine components using aluminum hydroxide gel (AHG) and further pH adjusting of the purified sample. The protocol was tested by detection of a single antibiotic in artificially spiked samples of real urine. Five antibiotics of cephalosporin class (cefazolin, cefoperazone, cefotaxime, ceftriaxone, and cefuroxime) were used for testing. SERS measurements were performed using a portable Raman spectrometer with 638 nm excitation wavelength and silver nanoparticles as SERS substrate. The calibration curves of four antibiotics (cefuroxime is the exception) cover the concentrations required for detection in patient’s urine during therapy (25/100‒500 μg/mL). Random error of the analysis (RSD < 20%) and limits of quantification (20‒90 μg/mL) for these antibiotics demonstrate the applicability of the protocol for reliable quantitative detection during therapeutic drug monitoring. The detection of cefuroxime using the protocol is not sensitive enough, allowing only for qualitative detection. Additionally, time stability and batch-to-batch reproducibility of AHG were studied and negative influence of the pretreatment protocol and its limitations were estimated and discussed.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4120
Author(s):  
Fei Shao ◽  
Jiaying Cao ◽  
Ye Ying ◽  
Ying Liu ◽  
Dan Wang ◽  
...  

For real application, it is an urgent demand to fabricate stable and flexible surface-enhanced Raman scattering (SERS) substrates with high enhancement factors in a large-scale and facile way. Herein, by using the electrospinning technique, a hydrophobic and flexible poly(styrene-co-butadiene) (SB) fibrous membrane is obtained, which is beneficial for modification of silver nanoparticles (Ag NPs) colloid in a small region and then formation of more “hot spots” by drying; the final SERS substrate is designated as Ag/SB. Hydrophobic Ag/SB can efficiently capture heterocyclic molecules into the vicinity of hot spots of Ag NPs. Such Ag/SB films are used to quantitatively detect trace triazophos residue on fruit peels or in the juice, and the limit of detection (LOD) of 2.5 × 10−8 M is achieved. Ag/SB films possess a capability to resist heat. As a case, 6-mercaptopurine (6MP) that just barely dissolves in 90 °C water is picked for conducting Ag/SB-film-based experiments.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanlin Mi ◽  
Yinzhou Yan ◽  
Mengyuan Wang ◽  
Lixue Yang ◽  
Jing He ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) has been widely investigated and employed as a powerful optical analytical technique providing fingerprint vibrational information of molecules with high sensitivity and resolution. In addition to metallic nanostructure, dielectric micro-/nano-structures with extraordinary optical manipulation properties have demonstrated capability in enhanced Raman scattering with ultralow energy losses. Here we report a facile cascaded structure composed of a large microsphere (LMS) and a small microsphere array with Ag nanoparticles as a novel hybrid SERS substrate, for the first time. The cascaded microsphere-coupled SERS substrate provides a platform to increase the molecular concentration, boost the intensity of localized excitation light, and direct the far-field emission, for giant Raman enhancement. It demonstrates the maximum enhancement factor of Raman intensity greater than 108 for the limit of detection down to 10−11 M of 4-nitrothiphenol molecules in aqueous solution. The present work inspires a novel strategy to fabricate cascaded dielectric/metallic micro-/nano-structures superior to traditional SERS substrates towards practical applications in cost-effective and ultrahigh-sensitive trace-detection.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Affi Nur Hidayah ◽  
Djoko Triyono ◽  
Yuliati Herbani ◽  
Rosari Saleh

Deltamethrin pesticides can cause inflammation, nephrotoxicity and hepatotoxicity as well as affect the activity of antioxidant enzymes in tissues. As a result of this concern, there is a rising focus on the development of fast and reliable pesticide residue testing to minimise potential risks to humans. The goal of this study is to use Au-Ag colloid nanoparticles as liquid surface-enhanced Raman spectroscopy (SERS) to improve the Raman signal in the detection of deltamethrin pesticide in a brewed tea. The liquid SERS system is fascinating to study due to its ease of use and its unlikeliness to cause several phenomena, such as photo-bleaching, combustion, sublimation and even photo-catalysis, which can interfere with the Raman signal, as shown in the SERS substrate. Our liquid SERS system is simpler than previous liquid SERS systems that have been reported. We performed the detection of pesticide analyte directly on brewed tea, without diluting it with ethanol or centrifuging it. Femtosecond laser-induced photo-reduction was employed to synthesise the liquid SERS of Au, Au-Ag, and Ag colloidal nanoparticles. The SERS was utilised to detect deltamethrin pesticide in brewed tea. The result showed that liquid SERS-based Ag NPs significantly enhance the Raman signal of pesticides compared with liquid SERS-based Au NPs and Au-Ag Nanoalloys. The maximum residue limits (MRLs) in tea in Indonesia are set at 10 ppm. Therefore, this method was also utilised to detect and improve, to 0.01 ppm, the deltamethrin pesticide Limit of Detection (LOD).


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2339
Author(s):  
Michele Lemos de Souza ◽  
Juan Carlos Otero ◽  
Isabel López-Tocón

The detection of emerging contaminants in the aquatic environment, such as ibuprofen and caffeine, was studied by means of surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticles (AgNPs) synthesized with β-cyclodextrin (βCD) as a reducing agent. The effect on the SERS signal of different molar ratios of Ag+/βCD in the synthesis route and the aging process of AgNPs were investigated by using trans-cinnamic as a test molecule. The SERS effectiveness of these β-cyclodextrin colloids (Ag@βCD) was also checked and compared with that of other silver sols usually employed in SERS synthesized by using other reducing agents such as citrate, borohydride and hydroxylamine. All the synthesized SERS substrates were characterized by different techniques. The experimental results indicate that Ag@βCD with the more diluted Ag+/βCD molar ratio showed the best SERS signal, enabling detection at trace concentrations of 0.5 µM in the case of trans-cinnamic acid. The Ag@βCD sols also showed the best sensitivity for detecting ibuprofen and caffeine, reaching the lowest limit of detection (0.1 mM). The proposed synthetic route for Ag@βCD sols provides an improved SERS substrate for detecting organic pollutants with better performance than other standard silver sols.


2019 ◽  
Vol 29 (4) ◽  
pp. 521
Author(s):  
Tran Cao Dao ◽  
Truc Quynh Ngan Luong ◽  
Tuan Anh Cao ◽  
Ngoc Minh Kieu

Sudan dyes are red colorants banned from use for food due to their toxic properties. However, because of the cheapness, they are sometimes adulterated into food illegally. Currently surface-enhanced Raman spectroscopy (SERS) is emerging as a good method to detect residues (including trace amounts) of Sudan dyes in food. In this report we present the SERS detection of Sudan I (a type of Sudan dyes) to concentrations as low as 1 ppb, using a very simple SERS substrate, which is made from silver nanoparticles chemically deposited on silicon surface.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1363 ◽  
Author(s):  
Yanting Feng ◽  
Rijian Mo ◽  
Ling Wang ◽  
Chunxia Zhou ◽  
Pengzhi Hong ◽  
...  

A method is developed for detecting the concentration of sodium thiocyanate (NaSCN) in milk based on surface-enhanced Raman scattering (SERS) technology. A trichloroacetic acid solution can be used to enhance the SERS signal because of its function in promoting the aggregation of Ag nanoparticles (Ag NPs). Meanwhile, the protein in milk would be precipitated as trichloroacetic acid added and the interference from protein could be reduced during the detection. In this work, the enhancement factor (EF) is 7. 56 × 105 for sodium thiocyanate in water and the limit of detection (LOD) is 0.002 mg/L. Meanwhile, this method can be used to detect the concentration of sodium thiocyanate in milk. Results show that SERS intensity increased as the concentration of sodium thiocyanate increase from 10 to 100 mg/L. The linear correlation coefficient is R2 = 0.998 and the detection limit is 0.04 mg/L. It is observed that the concentration of sodium thiocyanate does not exceed the standard in the three kinds of milk. The confirmed credibility of SERS detection is compared with conventional methods.


2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
K. Mougin ◽  
S. Darwich ◽  
L. Vidal ◽  
H. Haidara

Multilayers of well-ordered and close-packed 2D nanostructures of gold nanoparticles (NPs) were fabricated using a layer-by-layer technique. Colloidal spherical Au NPs of 5 and 15 nm diameters were synthesized and, respectively, self-assembled in multilayers. The robustness of these systems was insured by a combination of electrostatic and covalent bonds between nanoparticles and linker molecules. The compacity of the superlattice was characterized by AFM observation and ellipsometry measurements. Evidence of stronger cohesion of multilayers of smaller NPs size was brought by submitting the systems to sonication test. The multilayers have also proved analytical potential when used to detect low concentration methylene blue molecules adsorbed on the Au nanoparticles, by surface-enhanced Raman spectroscopy (SERS). The detection sensitivity of these two sized Au NPs architectures was directly compared to an evaporated “bulk” Au thin film of equivalent thickness. Results have displayed a strong increase of the electromagnetic field enhancement with a decrease of the NPs size, whereas the bulk thin Au film was shown to be inefficient as a SERS substrate. These results bring a nice evidence of size effects on the global performance (SERS, cohesion) and hopefully on the stability of NPs based nanostructures.


2021 ◽  
Vol 22 (22) ◽  
pp. 12191
Author(s):  
Puran Pandey ◽  
Sundar Kunwar ◽  
Ki-Hoon Shin ◽  
Min-Kyu Seo ◽  
Jongwon Yoon ◽  
...  

In this work, we develop a Ag@Al2O3@Ag plasmonic core–shell–satellite (PCSS) to achieve highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS) detection of probe molecules. To fabricate PCSS nanostructures, we employ a simple hierarchical dewetting process of Ag films coupled with an atomic layer deposition (ALD) method for the Al2O3 shell. Compared to bare Ag nanoparticles, several advantages of fabricating PCSS nanostructures are discovered, including high surface roughness, high density of nanogaps between Ag core and Ag satellites, and nanogaps between adjacent Ag satellites. Finite-difference time-domain (FDTD) simulations of the PCSS nanostructure confirm an enhancement in the electromagnetic field intensity (hotspots) in the nanogap between the Ag core and the satellite generated by the Al2O3 shell, due to the strong core–satellite plasmonic coupling. The as-prepared PCSS-based SERS substrate demonstrates an enhancement factor (EF) of 1.7 × 107 and relative standard deviation (RSD) of ~7%, endowing our SERS platform with highly sensitive and reproducible detection of R6G molecules. We think that this method provides a simple approach for the fabrication of PCSS by a solid-state technique and a basis for developing a highly SERS-active substrate for practical applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3250
Author(s):  
Juanjuan Guo ◽  
Yang Xu ◽  
Caili Fu ◽  
Longhua Guo

Surface-enhanced Raman spectroscopy (SERS) has been proven to be a promising analytical technique with sensitivity at the single-molecule level. However, one of the key problems preventing its real-world application lies in the great challenges that are encountered in the preparation of large-scale, reproducible, and highly sensitive SERS-active substrates. In this work, a new strategy is developed to fabricate an Ag collide SERS substrate by using cetyltrimethylammonium bromide (CTAB) as a connection agent. The developed SERS substrate can be developed on a large scale and is highly efficient, and it has high-density “hot spots” that enhance the yield enormously. We employed 4-methylbenzenethiol(4-MBT) as the SERS probe due to the strong Ag–S linkage. The SERS enhancement factor (EF) was calculated to be ~2.6 × 106. The efficacy of the proposed substrate is demonstrated for the detection of malachite green (MG) as an example. The limit of detection (LOD) for the MG assay is brought down to 1.0 × 10−11 M, and the relative standard deviation (RSD) for the intensity of the main Raman vibration modes (1620, 1038 cm−1) is less than 20%.


Sign in / Sign up

Export Citation Format

Share Document