scholarly journals Novel Insights into the Thioesterolytic Activity of N-Substituted Pyridinium-4-oximes

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2385
Author(s):  
Blaženka Foretić ◽  
Vladimir Damjanović ◽  
Robert Vianello ◽  
Igor Picek

The pyridinium oximes are known esterolytic agents, usually classified in the literature as catalysts, which mimic the catalytic mode of hydrolases. Herein, we combined kinetic and computational studies of the pyridinium-4-oxime-mediated acetylthiocholine (AcSCh+) hydrolysis to provide novel insights into their potential catalytic activity. The N-methyl- and N-benzylpyridinium-4-oximes have been tested as oximolytic agents toward the AcSCh+, while the newly synthesized O-acetyl-N-methylpyridinium-4-oxime iodide was employed for studying the consecutive hydrolytic reaction. The relevance of the AcSCh+ hydrolysis as a competitive reaction to AcSCh+ oximolysis was also investigated. The reactions were independently studied spectrophotometrically and rate constants, koxime, kw and kOH, were evaluated over a convenient pH-range at I = 0.1 M and 25 °C. The catalytic action of pyridinium-4-oximes comprises two successive stages, acetylation (oximolysis) and deacetylation stage (pyridinium-4-oxime-ester hydrolysis), the latter being crucial for understanding the whole catalytic cycle. The complete mechanism is presented by the free energy reaction profiles obtained with (CPCM)/M06–2X/6–311++G(2df,2pd)//(CPCM)/M06–2X/6–31+G(d) computational model. The comparison of the observed rates of AcSCh+ oximolytic cleavage and both competitive AcSCh+ and consecutive pyridinium-4-oxime-ester hydrolytic cleavage revealed that the pyridinium-4-oximes cannot be classified as non-enzyme catalyst of the AcSCh+ hydrolysis but as the very effective esterolytic agents.

1982 ◽  
Vol 47 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Ivan Votruba ◽  
Antonín Holý

Rat liver SAH-hydrolase is strongly inhibited by four stereoisomeric 4-(adenin-9-yl)-2,3-dihydroxybutyric acids (eritadenines). D-Eritadenine, which is the most effective of the four, inactivates the catalytic activity of SAH-hydrolase at IC50 = 1.2 .10-8 mol l-1 in the hydrolytic reaction. The enzyme is irreversibly inhibited (τ/2 = 1.6 min). The inactivation activity decreases in the order D-erythro(2R, 3R) L-erythro(2S, 3S) threo(2S, 3R) threo(2R, 3S) configuration.


2019 ◽  
Vol 33 (5) ◽  
pp. e4891 ◽  
Author(s):  
Sevda Dehghani ◽  
Samahe Sadjadi ◽  
Naeimeh Bahri‐Laleh ◽  
Mehdi Nekoomanesh‐Haghighi ◽  
Albert Poater

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mydhili P. Sripathi ◽  
Sireesha Berely ◽  
Chittireddy Venkata Ramana Reddy

To understand the stability, chelation behaviour, and biological activity of 4-Formylpyridinethiosemicarbazone (H4FPT), it is important to recognize its interactive geometry. Hence, computational studies on geometrically optimized structures of thione and thiol forms of H4FPT were performed. Binary metal complexes of the ligand, H4FPT (L) with the Ni(II) and Cu(II) metal ions (M), were synthesized and characterized by various spectroanalytical techniques as elemental analysis, molar conductance, magnetic susceptibility measurements, LC-MS, TGA, IR, UV-Visible, ESR, and powder XRD. Elemental analysis, LC-MS, and TGA studies indicate 1:2 (ML2) composition for mononuclear Ni(II) complex and 1:1 (ML) composition for dinuclear Cu(II) complex. Electronic absorption titrations, fluorescence quenching studies, and viscosity measurements suggest intercalative mode of binding of the complexes with calf thymus DNA (CT-DNA). These complexes also promote hydrolytic cleavage of plasmid pBR322. The ligand (H4FPT) and its complexes showed moderate-to-good activity against Gram-positive and Gram-negative bacterial strains. The DPPH radical scavenging studies showed antioxidant nature of both complexes.


1986 ◽  
Vol 250 (3) ◽  
pp. R505-R511 ◽  
Author(s):  
S. C. Hand ◽  
J. F. Carpenter

Phosphofructokinase (PFK) purified from the rat myocardium is reversibly inactivated under a pH regime approximating that reported for ischemic hearts. At pH 6.5 and 37 degrees C, the enzyme displays a hysteretic loss of activity during 60-min incubations, declining to 48% of control (pH 7.1, 37 degrees C) values. Citric acid increases the degree of inactivation (28% of control), whereas fructose 1,6-bisphosphate reduces the decline in activity. Simultaneous measurements of 90 decreases light scattering and catalytic activity suggest the inactivation is temporally linked to dissociation of active tetrameric enzyme into an inactive form of lower molecular weight. Fluorescence enhancement of the extrinsic probe sodium mansate, which binds preferentially to dimeric PFK, indicates that the equilibrium dimer concentration (cp1 infinity) increases as pH is lowered. This increase in cp1 infinity exhibits a strong inverse correlation (r = 0.984) with catalytic activity across the pH range of 8.0 to 6.5. Returning solution pH to 7.0 or above promotes a time-dependent reactivation and repolymerization of PFK. The rate of reactivation is increased at higher enzyme concentrations and in the presence of trimethylamine-N-oxide, a nitrogenous osmolyte noted for its ability to promote protein aggregation reactions. Thus these results demonstrate the capacity of rat heart PFK to undergo reversible inactivation and dissociation in vitro and represent the first phase of a two-part study testing the hypothesis that these pH-induced hysteretic processes are operative in the ischemic myocardium. The data are evaluated in terms of the potential roles of hysteretic enzymes in metabolic regulation.


2004 ◽  
Vol 126 (31) ◽  
pp. 9492-9493 ◽  
Author(s):  
Bernd Ensing ◽  
Alessandro Laio ◽  
Francesco L. Gervasio ◽  
Michele Parrinello ◽  
Michael L. Klein

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Snežana Rajković ◽  
Beata Warżajtis ◽  
Marija D. Živković ◽  
Biljana Đ. Glišić ◽  
Urszula Rychlewska ◽  
...  

Dinuclear platinum(II) complexes, [{Pt(en)Cl}2(μ-qx)]Cl2·2H2O (1), [{Pt(en)Cl}2(μ-qz)](ClO4)2(2), and [{Pt(en)Cl}2(μ-phtz)]Cl2·4H2O (3), were synthesized and characterized by different spectroscopic techniques. The crystal structure of1was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of1–3. The chlorido Pt(II) complexes1–3were converted into the corresponding aqua species1a–3a, and their reactions with an equimolar amount of Ac–L–Met–Gly and Ac–L–His–Gly dipeptides were studied by1H NMR spectroscopy in the pH range 2.0 < pH < 2.5 at 37°C. It was found that, in all investigated reactions with the Ac–L–Met–Gly dipeptide, the cleavage of the Met–Gly amide bond had occurred, but complexes2aand3ashowed lower catalytic activity than1a. However, in the reactions with Ac–L–His–Gly dipeptide, the hydrolysis of the amide bond involving the carboxylic group of histidine was observed only with complex1a. The observed disparity in the catalytic activity of these complexes is thought to be due to different relative positioning of nitrogen atoms in the bridging qx, qz, and phtz ligands and consequent variation in the intramolecular separation of the two platinum(II) metal centers.


2016 ◽  
Vol 52 (86) ◽  
pp. 12753-12756 ◽  
Author(s):  
Zonghua Pu ◽  
Min Wang ◽  
Zongkui Kou ◽  
Ibrahim Saana Amiinu ◽  
Shichun Mu

Mo2C QDs/NGCLs exhibit high catalytic activity and durability for the hydrogen evolution reaction in a broad pH range.


2017 ◽  
Vol 5 (21) ◽  
pp. 10510-10516 ◽  
Author(s):  
Jing Wang ◽  
Zhongzhe Wei ◽  
Haiyan Wang ◽  
Yiqing Chen ◽  
Yong Wang

CoOx–CNT–CC electrodes not only displayed outstanding performance over a wide pH range, but also showed superb catalytic activity at low temperature.


2018 ◽  
Vol 73 (9-10) ◽  
pp. 345-351 ◽  
Author(s):  
Alena Komersová ◽  
Markéta Kovářová ◽  
Karel Komers ◽  
Václav Lochař ◽  
Alexander Čegan

AbstractThe dependence of the activity of acetylcholinesterase from electric eel at a pH value range of 4.8–9.8 (phosphate buffer), regarding acetylcholine and acetylthiocholine hydrolysis, was determined at 25 °C, ionic strength of 0.11 M, and initial substrate concentration of 4 mM. At a pH range of 4.8–9.8, the dependencesA(pH) form a sigmoid increasing curve with the maximum catalytic activity at a pH range 8–9.5. For acetylcholine hydrolysis, the kinetic reason for such an increase inAconsists mainly of an increase in the rate constantk2(Michaelis-Menten) model with increasing pH of the reaction mixture. For acetylthiocholine hydrolysis, the kinetic explication of the determined dependenceA(pH) is more complicated.


Sign in / Sign up

Export Citation Format

Share Document