scholarly journals Cyperus articulatus L. (Cyperaceae) Rhizome Essential Oil Causes Cell Cycle Arrest in the G2/M Phase and Cell Death in HepG2 Cells and Inhibits the Development of Tumors in a Xenograft Model

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2687
Author(s):  
Mateus L. Nogueira ◽  
Emilly J. S. P. de Lima ◽  
Asenate A. X. Adrião ◽  
Sheila S. Fontes ◽  
Valdenizia R. Silva ◽  
...  

Cyperus articulatus L. (Cyperaceae), popularly known in Brazil as “priprioca” or “piriprioca”, is a tropical and subtropical plant used in popular medical practices to treat many diseases, including cancer. In this study, C. articulatus rhizome essential oil (EO), collected from the Brazilian Amazon rainforest, was addressed in relation to its chemical composition, induction of cell death in vitro and inhibition of tumor development in vivo, using human hepatocellular carcinoma HepG2 cells as a cell model. EO was obtained by hydrodistillation using a Clevenger-type apparatus and characterized qualitatively and quantitatively by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detection (GC-FID), respectively. The cytotoxic activity of EO was examined against five cancer cell lines (HepG2, HCT116, MCF-7, HL-60 and B16-F10) and one non-cancerous one (MRC-5) using the Alamar blue assay. Cell cycle distribution and cell death were investigated using flow cytometry in HepG2 cells treated with EO after 24, 48 and 72 h of incubation. The cells were also stained with May–Grunwald–Giemsa to analyze the morphological changes. The anti-liver-cancer activity of EO in vivo was evaluated in C.B-17 severe combined immunodeficient (SCID) mice with HepG2 cell xenografts. The main representative substances of this EO sample were muskatone (11.6%), cyclocolorenone (10.3%), α-pinene (8.26%), pogostol (6.36%), α-copaene (4.83%) and caryophyllene oxide (4.82%). EO showed IC50 values for cancer cell lines ranging from 28.5 µg/mL for HepG2 to >50 µg/mL for HCT116, and an IC50 value for non-cancerous of 46.0 µg/mL (MRC-5), showing selectivity indices below 2-fold for all cancer cells tested. HepG2 cells treated with EO showed cell cycle arrest at G2/M along with internucleosomal DNA fragmentation. The morphological alterations included cell shrinkage and chromatin condensation. Treatment with EO also increased the percentage of apoptotic-like cells. The in vivo tumor mass inhibition rates of EO were 46.5–50.0%. The results obtained indicate the anti-liver-cancer potential of C. articulatus rhizome EO.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2488-2488 ◽  
Author(s):  
Yana Pikman ◽  
Andrew Furman ◽  
Emily S. Lee ◽  
Andrew E. Place ◽  
Gabriela Alexe ◽  
...  

Abstract While significant progress has been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), approximately 10-20% of newly diagnosed patients will experience either induction failure or relapse. Additionally, fewer than 50% of T-ALL patients who experience a relapse are long-term survivors. New targeted therapies are needed for the treatment of this disease. Multiple lines of evidence point to Cyclin D3/CDK4/6 as a potential therapeutic target in T-ALL. Cyclin D3 (CCND3), a direct target of activated NOTCH1, is upregulated in T-ALL, and CCND3 null animals are refractory to NOTCH1 driven T-ALL. CCND3 binds and activates CDK4/6, and the CCND3-CDK complex phosphorylates the tumor suppressor RB leading to cell cycle progression. Previous studies have demonstrated that CDK4/6 small-molecule inhibition is an effective therapeutic strategy for the treatment of NOTCH1-driven T-ALL mouse models. Using the publicly available Genomics of Drug Sensitivity in Cancer data set, we identified NOTCH1 mutations as a biomarker of response and RB mutations as a biomarker of resistance to the CDK4/6 inhibitor palbociclib. We validated that RB null status predicts resistance to the Novartis CDK4/6 inhibitor LEE011 in a panel of T-ALL cell lines. Interestingly, we identified both NOTCH1 mutant, as well as NOTCH1 wildtype, T-ALL cell lines that were sensitive to LEE011 treatment. Mining of publicly available data revealed that CDK6 is consistently marked by a super-enhancer in T-ALL cell lines, both NOTCH1 mutant and wildtype, suggesting another potential reason for sensitivity to CDK4/6 inhibition in this lineage. Treatment with LEE011 also led to a dose-dependent cell cycle arrest and cell death in T-ALL cells, including MOLT4 (NOTCH1 mutant) and MOLT16 (NOTCH1 wildtype). Combinations of drugs with CDK4/6 inhibitors will likely be critical for the successful translation of this drug class because they generally do not induce cell death. Combinations with cytotoxic chemotherapy are predicted to be antagonistic, however, as most of these drugs rely on rapidly proliferating cells, and CDK4/6 inhibition induces cell cycle arrest. To discover effective, and immediately translatable combination therapies with LEE011 in T-ALL, we performed combination studies of LEE011 with agents standardly used for T-ALL treatment, including corticosteroids, methotrexate, mercaptopurine, asparaginase, vincristine and doxorubicin. Combinations of LEE011 with methotrexate, mercaptopurine, vincristine or asparaginase were antagonistic in T-ALL cell lines while the combination with doxorubicin was additive. Combination treatment of LEE011 with corticosteroids had a synergistic effect on cell viability in MOLT4 and MOLT16 cell lines as measured by excess over Bliss additive and isobologram analyses. This combination also decreased phospho RB signaling, increased cell cycle arrest and induced cell death to a greater degree than either drug alone. LEE011 treatment increased CCND3 protein levels, an effect mitigated by glucocorticoid treatment, one possible mechanism contributing to the observed synergy. Additionally, the combination of LEE011 with everolimus, an mTOR inhibitor, was synergistic in these cell lines. We next extended testing to in vivo models of T-ALL. In a MOLT16 orthotopic mouse model, the combination of LEE011 and everolimus significantly prolonged mouse survival compared to treatment with each individual drug alone. The combination of LEE011 with dexamethasone did not extend survival over treatment with LEE011 alone and dexamethasone was inactive in vivo. Both LEE011 and everolimus had on-target activity in the treated mice as measured by inhibition of peripheral blood phospho-RB and phospho-4EBP1. We then tested the combination of LEE011 with dexamethasone in a second mouse model, a MOLT4 orthotopic model. Here, the combination of LEE011 with dexamethasone was more effective in prolonging survival compared to each treatment alone, supporting a heterogeneous response to the combination of LEE011 with dexamethasone in vivo. We conclude that LEE011 is active in T-ALL, and that combination therapy with corticosteroids and/or mTOR inhibitors warrants further investigation in the clinical setting. Disclosures Kim: Novartis Pharmaceuticals: Employment. Stegmaier:Novartis Pharmaceuticals: Consultancy.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5016
Author(s):  
Aveen N. Adham ◽  
Mohamed Elamir F. Hegazy ◽  
Alaadin M. Naqishbandi ◽  
Thomas Efferth

Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3066-3066 ◽  
Author(s):  
Luigi Scotto ◽  
Kelly Zullo ◽  
Xavier Jirau Serrano ◽  
Laura K Fogli ◽  
Owen A. O'Connor

Abstract Mantle cell lymphoma (MCL) is a disease characterized by gross cell cycle dysregulation driven by the constitutive overexpression of cyclin D1. The identification of a “proliferation signature” in MCL, underscores the necessity of new therapeutic approaches aimed at lowering the proliferative signature of the disease, theoretically shifting the prognostic features of the disease. Romidepsin, an HDAC inhibitor (HDACi) approved for the treatment of relapsed T-cell lymphoma, is thought to induce cell cycle arrest and apoptosis. Central to the block of cell proliferation is the up-regulation of the cdk inhibitor p21Cip1/Waf1. However up-regulation of p21Cip1/Waf1 has also been shown to reduce sensitivity to romidepsin. HDACi activates p21Cip1/Waf1 expression via ATM and KU60019, a specific ATM inhibitor, has been shown to decrease the p21Cip1/Waf1 protein levels in a concentration dependent manner. We sought to explore the effect of the combination of romidepsin and KU60019 in inducing cell death in MCL. Analysis of romidepsin treated Jeko-1 cell extracts showed a marked effect on the expression of proteins involved in cell cycle regulation. Decrease expression of Emi1, a mitotic regulator required for the accumulation of the APC/C substrates was observed. Emi1 is also responsible for the stability of the E3 ubiquitin ligase Skp2 that specifically recognizes and promotes the degradation of phosphorylated cdk inhibitor p27. However, decrease in Emi1 protein levels, upon addition of romidepsin, was not followed by an increased expression of the cdk inhibitor p27. On the other end, increased expression of the cdk inhibitor p21Cip1/Waf1, was a common feature of all romidepsin treated MCL lines analyzed. Cell cycle analysis via Fluorescent Activated Cell Sorting (FACS) of romidepsin treated Jeko-1 cells showed an accumulation of romidepsin treated cells in the G2/M phase when compared to the control suggesting a p21Cip1/Waf1 induced cell cycle arrest. For all cytotoxicity assays, luminescent cell viability was performed using CellTiter-GloTM followed by acquisition on a Biotek Synergy HT and IC50s calculated using the Calcusyn software. Drug: drug interactions were analyzed using the calculation of the relative risk ratios (RRR). Synergy analyses were performed using Jeko-1, Maver-1 and Z-138 cells treated with different concentrations of romidepsin corresponding to IC10-20 in combination with KU60019 at a concentration of 2.5, 5.0, 7.5 and 15 umol/L for 24, 48 and 72 hours. A synergistic cytotoxic effect was observed in all MCL cell lines when the HDACi was combined with KU60019 throughout the range of all concentrations. The RRR analysis showed a strong synergism at 48 and 72 hours in virtually all combinations of HDACi and KU60019 in all three cell lines. The results of drug:drug combination in two of the three cell lines are shown below. Protein expression analysis of Jeko-1 and Maver-1cells treated with single agents or combinations for 48 hours revealed changes in a host of proteins known to be involved in cell cycle control and apoptosis. The increased p21 protein expression upon addition of romidepsin, was not observed when the romidepsin treatment was combined with the KU60019. Increased activation of the programmed cell death proteins Caspase 8, induced by Fas, and Caspase 3 was observed upon combinations of the single agents in all three cell lines, resulting in an increased cleavage of Poly (ADP-ribose) polymerase (PARP-1). Finally, the abundance of the anti-apoptotic proteins Bcl-XL and BCL-2 showed a significant decrease after treatment with romidepsin plus increase concentrations of KU60019 when compared with their abundance in the presence of the single agents. Cell cycle analysis of Jeko-1 cells treated for 24 hours with single agents and combination suggests that the increased apoptosis is the result of inhibition of the p21Cip1/Waf1 induced G2/M cell cycle arrest by KU60019. Overall, these data demonstrated that the combination of romidepsin and KU60019 was synergistically effective in inhibiting the in vitro growth of the mantle cell lymphoma lines. Jeko-1 Maver-1 Disclosures: O'Connor: Celgene: Consultancy, Research Funding.


2013 ◽  
Vol 138 (2-3) ◽  
pp. 1034-1041 ◽  
Author(s):  
Tianpeng Chen ◽  
Jianxiong Hao ◽  
Jinfeng He ◽  
Jianchun Zhang ◽  
Yingcong Li ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1359-1359
Author(s):  
Ana A Tula-Sanchez ◽  
Aaron Havas ◽  
Peter Alonge ◽  
Mary E Klein ◽  
Taralyn Y Rogers ◽  
...  

Abstract Abstract 1359 Diffuse large B-cell lymphoma (DLBCL) is the most common type of Non-Hodgkin Lymphoma (NHL) throughout the world. DLBCL is an aggressive, heterogeneous disease with two major recognized cell-of-origin subtypes: “germinal center” (GCB) and “activated B-cell like” (ABC), the latter having the worse prognosis. Overall, DLBCL remains fatal for about 30% patients due to relapse or lack of response to initial therapy. Resistant/relapsed DLBCL patients could benefit from the addition of new promising antiproliferative drugs, such as histone deacetylase inhibitors (HDACIs), to current chemotherapy regimens. So far, Vorinostat and Romidepsin, two structurally different HDACIs, have been approved for the treatment of hematological cancers. Despite their proven antiproliferative, pro-apoptotic effects, response to these drugs against DLBCL in clinical trials have been variable, ranging from complete/partial responses to stable disease to no response. The mechanisms of action of these drugs are still poorly understood, mainly because the function of their target deacetylases are cell context-specific. Therefore, characterization of the specific anticancer mechanisms of action of HDACIs in DLBCL could potentially lead to development of novel combinatorial drug regimens effective against resistant/relapsed DLBCL patients. To define HDACI action in DLBCL, we treated DLBCL-derived cell lines with PXD101, (Belinostat); a hydroxamate HDACI, like Vorinostat. We demonstrated that PXD101 is able to produce 24h growth inhibition (IC50) at submicromolar concentrations regardless of the DLBCL subtype. The 24h IC50values were used in all the subsequent experiments. Cell cycle and apoptosis analysis by flow cytometry indicated that PXD101 produces cytotoxic effects on two of the GCB cell lines; DB and OCILY19 underwent G2/M cell cycle arrest at 24 hours followed by apoptosis at 48 and 72 hours of treatment. Immunoblotting of PARP and caspase-3 cleavage further confirmed apoptosis. More importantly, when cells were treated for only 8 hours with PXD101 and then the drug was removed for 24 hours, cells showed apoptosis rates similar to those observed with 48h of continuous treatment; suggesting that once that these cell lines are exposed to the drug they rapidly commit to cell death. Thus, we have classified the DB and OCILY19 cell lines as models for sensitivity to the apoptotic effects of HDACI. In contrast, PXD101 induced cytostatic effects on the GCB cell line SUDHL4 and ABC cell lines U2932 and SUDHL8. All three cell lines showed G1 phase cell cycle arrest with little apoptosis. The G1 arrest is reversible after 48 hours of drug removal. Because of the lack of cell death and the reversibility of cell cycle arrest, we have classified these cell lines as models of HDACI resistance. Previous studies have shown that induction of p21 is responsible for G1 arrest in cells treated with HDACIs. Western blot analysis showed that none of the cell lines, except U2932, express p21, but upon PXD101, p21 protein levels were induced at 24, 48 and 72 hours of PXD101 treatment in SUDHL4 and U2932. In contrast, p21 was induced to a lesser extent in OCILY19 and DB, but its expression was not sustained beyond 24 hours of treatment. Since we also observed a corresponding loss in Rb phosphorylation, we tested the effect of PXD101 on cyclin dependent kinase 2 (CDK2) activity. This enzyme complex is responsible for entry into S phase and is inhibited by association with p21. In all three resistant cell lines CDK2 activity was reduced after only 24 hours of treatment with PXD101. The loss in activity was correlated with increased association with p21, as determined by immunoprecipitation. These results indicate that sustained upregulation of p21 by HDACIs such as PXD101 plays a role in bringing about G1 arrest that may protect DLBCL cells from apoptosis. Combined treatment with therapeutics that prevent p21 upregulation and G1 arrest may work synergistically with HDACIs to trigger apoptosis in HDACI-resistant cell lines. To that end, we have begun analysis of the cyclin-dependent kinase inhibitor, flavopiridol, and have shown that it prevents both p21 upregulation and G1 arrest in the HDACi-resistant DLBCL cell lines. Studies to measure synergism with PXD101 in bringing about cell death are currently underway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5004-5004
Author(s):  
Yuliya Linhares ◽  
Jade Dardine ◽  
Siavash Kurdistani

Abstract Abstract 5004 Introduction: Amiloride is an FDA approved potassium-sparing diuretic which targets Na+/H+ exchanger isoform 1 (NHE1). NHE1 is responsible for the regulation of the intracellular pH, as well as cell-cycle and apoptosis. In supra-pharmacologic concentrations, amiloride non-specifically inhibits protein kinases. Recent study demonstrated that proapoptotic effect of amiloride in CML cell lines is linked to the modulation of the alternative splicing of Bcl-x, HIPK3, and BCR/ABL genes and is independent of pHi. Here, we demonstrate that pharmacologic doses of amiloride preferentially induce growth inhibition, cell cycle arrest and apoptosis in Flt3-ITD positive acute myeloid leukemia cell lines as compared to Bcr-Abl positive leukemia cell line. Our data suggests that amiloride may have an effect on Flt3 signaling and that its treatment potential for Flt3-ITD positive acute myeloid leukemia needs to be explored. Methods: MV4-11, MOLM13 and K562 cells lines in log-phase growth were used for the experiments. Analysis of the baseline Flt3 expression and phosphorylation status was assessed via Flt3 immunoprecipitation and Western blotting for Flt3 and phosphotyrosine. Cells were incubated with various amiloride concentrations; equal volume dilutions of DMSO were used for control. Cell counting and trypan blue exclusion viability was performed on TC10 Bio-Rad automated cell counter. The cell cycle analysis was performed applying propidium iodide staining. To assess for apoptosis and cell death, we used annexin V/PI staining kit and flow cytometry. Results: MOLM13 and MV4-11 cell lines carry activating Flt3-ITD mutation. We confirmed the expression and constituative activation of Flt3 in MOLM13 and MV4-11 cells with Western blotting. Flt3 protein was not detectable in K562 cell line. Amiloride at 0.025 mM and 0.05 mM completely inhibited the growth of MV4-11 cells after 24 hrs of treatment with no significant increase in total or live cell numbers at 72 hrs, but only mildly affected K562 cell proliferation. While the above amiloride concentrations caused cell death in MV4-11 and MOLM13 cell lines, there was no increased cell death in K562 cells. Incubation of MOLM13 and MV4-11 cell lines with 0.05 mM amiloride for 20 hrs induced cell cycle arrest. In MV4-11 cell line, the proportion of S phase cells after amiloride treatment was 15.4% (SD=5.4%) as compared to 31.3% (SD=1.4%) in control. MOLM13 cell line demonstrated 15.3% (SD=4.7%) of cells in S after amiloride treatment as compared to 35.3% (SD=2.4%) cells in S phase in control treatment. In K562 cell line, there was less effect with 52% (SD=4.2%) of cells in S phase in control as compared to 37% (SD=8.9%) in amiloride treatment. MV4-11 and MOLM 13 cell lines were more sensitive than K562 cells to amiloride induced apoptosis with 28.8% (control 12.7%) of MV4-11 cells, 11.4% (control 7.4%) of MOLM13 cells, and 11.4% (control 8.6%) of K562 cells being apoptotic after 20 hr treatment with 0.05mM amiloride. At 72 hrs of amiloride treatment 34% (control 1.5%) of MV4-11 cells, 17% (control 5%) of MOLM13 cells and 11% of K562 cells (control 8.9%) were apoptotic. Amiloride had similar effect on the number of dead cells with no increase in total cell death in K562 cell line. Upon treatment with increasing amiloride concentrations, there was dose-dependent increase in cell death and apoptosis in all three cell lines with K562 line showing relative resistance to amiloride. Discussion: Our results demonstrate that amiloride induces cell cycle arrest and inhibits proliferation of Flt3-ITD positive cell lines MV4-11 and MOLM13 as well as K562 cell line at a pharmacologic concentration of 0.05 mM. Both, cell cycle arrest and antiproliferative effect are more pronounced in Flt3-ITD positive cells lines while it is mild in Bcr-Abl positive K562 cell line. Pharmacologic doses of amiloride induce cell death and apoptosis in Flt3-ITD positive cell lines but not in K562 cell line. Both, Bcr-Abl and Flt3 signaling stimulates proliferation and inhibits apoptosis in myeloid leukemia cells. Our study suggests that amiloride may induce cell cycle arrest and apoptosis via modulating Flt3 signaling cascade. We are currently investigating the effects of amiloride on Flt3 phosphorylation. In conclusion, our data suggests that amiloride presents a potential treatment option for Flt3-ITD positive acute myeloid leukemia. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 120 (6) ◽  
pp. 9608-9623 ◽  
Author(s):  
Wagner D. Vital ◽  
Heron F. V. Torquato ◽  
Larissa de Oliveira Passos Jesus ◽  
Wagner Alves de Souza Judice ◽  
Maria Fátima das G. F. da Silva ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5185
Author(s):  
Mohamed M. Tawfik ◽  
Nourhan Eissa ◽  
Fayez Althobaiti ◽  
Eman Fayad ◽  
Ali H. Abu Almaaty

Jellyfish venom is a rich source of bioactive proteins and peptides with various biological activities including antioxidant, antimicrobial and antitumor effects. However, the anti-proliferative activity of the crude extract of Rhopilema nomadica jellyfish venom has not been examined yet. The present study aimed at the investigation of the in vitro effect of R. nomadica venom on liver cancer cells (HepG2), breast cancer cells (MDA-MB231), human normal fibroblast (HFB4), and human normal lung cells (WI-38) proliferation by using MTT assay. The apoptotic cell death in HepG2 cells was investigated using Annexin V-FITC/PI double staining-based flow cytometry analysis, western blot analysis, and DNA fragmentation assays. R. nomadica venom displayed significant dose-dependent cytotoxicity on HepG2 cells after 48 h of treatment with IC50 value of 50 μg/mL and higher toxicity (3:5-fold change) against MDA-MB231, HFB4, and WI-38 cells. R. nomadica venom showed a prominent increase of apoptosis as revealed by cell cycle arrest at G2/M phase, upregulation of p53, BAX, and caspase-3 proteins, and the down-regulation of anti-apoptotic Bcl-2 protein and DNA fragmentation. These findings suggest that R. nomadica venom induces apoptosis in hepatocellular carcinoma cells. To the best of the authors’ knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest of R. nomadica jellyfish venom.


Sign in / Sign up

Export Citation Format

Share Document