scholarly journals Bacterial Biotransformation of Oleic Acid: New Findings on the Formation of γ-Dodecalactone and 10-Ketostearic Acid in the Culture of Micrococcus luteus

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3024 ◽  
Author(s):  
Filip Boratyński ◽  
Ewa Szczepańska ◽  
Davide De Simeis ◽  
Stefano Serra ◽  
Elisabetta Brenna

Microbial conversion of oleic acid (1) to form value-added industrial products has gained increasing scientific and economic interest. So far, the production of natural lactones with flavor and fragrance properties from fatty acids by non-genetically modified organisms (non-GMO) involves whole cells of bacteria catalyzing the hydration of unsaturated fatty acids as well as yeast strains responsible for further β-oxidation processes. Development of a non-GMO process, involving a sole strain possessing both enzymatic activities, significantly lowers the costs of the process and constitutes a better method from the customers’ point of view regarding biosafety issues. Twenty bacteria from the genus of Bacillus, Comamonas, Dietzia, Gordonia, Micrococcus, Pseudomonas, Rhodococcus and Streptomyces were screened for oxidative functionalization of oleic acid (1). Micrococcus luteus PCM525 was selected as the sole strain catalyzing the one-pot transformation of oleic acid (1) into natural valuable peach and strawberry-flavored γ-dodecalactone (6) used in the food, beverage, cosmetics and pharmaceutical industries. Based on the identified products formed during the process of biotransformation, we clearly established a pathway showing that oleic acid (1) is hydrated to 10-hydroxystearic acid (2), then oxidized to 10-ketostearic acid (3), giving 4-ketolauric acid (4) after three cycles of β-oxidation, which is subsequently reduced and cyclized to γ-dodecalactone (6) (Scheme 1). Moreover, three other strains (Rhodococcus erythropolis DSM44534, Rhodococcus ruber PCM2166, Dietzia sp. DSM44016), with high concomitant activities of oleate hydratase and alcohol dehydrogenase, were identified as efficient producers of 10-ketostearic acid (3), which can be used in lubricant and detergent formulations. Considering the prevalence of γ-dodecalactone (6) and 10-ketostearic acid (3) applications and the economic benefits of sustainable management, microbial bioconversion of oleic acid (1) is an undeniably attractive approach.

LWT ◽  
2021 ◽  
pp. 111925
Author(s):  
Rodica Mărgăoan ◽  
Aslı Özkök ◽  
Şaban Keskin ◽  
Nazlı Mayda ◽  
Adriana Cristina Urcan ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yu Gao ◽  
Yan Sun ◽  
Huiling Gao ◽  
Ying Chen ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Engineering triacylglycerol (TAG) accumulation in vegetative tissues of non-food crops has become a promising way to meet our increasing demand for plant oils, especially the renewable production of biofuels. The most important target modified in this regard is diacylglycerol acyltransferase (DGAT) enzyme responsible for the final rate-limiting step in TAG biosynthesis. Cyperus esculentus is a unique plant largely accumulating oleic acid-enriched oil in its underground tubers. We speculated that DGAT derived from such oil-rich tubers could function more efficiently than that from oleaginous seeds in enhancing oil storage in vegetative tissues of tobacco, a high-yielding biomass crops. Results Three CeDGAT genes namely CeDGAT1, CeDGAT2-1 and CeDGAT2-2 were identified in C. esculentus by mining transcriptome of developing tubers. These CeDGATs were expressed in tissues tested, with CeDGAT1 highly in roots, CeDGAT2-1 abundantly in leaves, and CeDGAT2-2 predominantly in tubers. Notably, CeDGAT2-2 expression pattern was in accordance with oil dynamic accumulation during tuber development. Overexpression of CeDGAT2-2 functionally restored TAG biosynthesis in TAG-deficient yeast mutant H1246. Oleic acid level was significantly increased in CeDGAT2-2 transgenic yeast compared to the wild-type yeast and ScDGA1-expressed control under culture with and without feeding of exogenous fatty acids. Overexpressing CeDGAT2-2 in tobacco led to dramatic enhancements of leafy oil by 7.15- and 1.7-fold more compared to the wild-type control and plants expressing Arabidopsis seed-derived AtDGAT1. A substantial change in fatty acid composition was detected in leaves, with increase of oleic acid from 5.1% in the wild type to 31.33% in CeDGAT2-2-expressed tobacco and accompanied reduction of saturated fatty acids. Moreover, the elevated accumulation of oleic acid-enriched TAG in transgenic tobacco exhibited no significantly negative impact on other agronomic traits such as photosynthesis, growth rates and seed germination except for small decline of starch content. Conclusions The present data indicate that CeDGAT2-2 has a high enzyme activity to catalyze formation of TAG and a strong specificity for oleic acid-containing substrates, providing new insights into understanding oil biosynthesis mechanism in plant vegetative tissues. Overexpression of CeDGAT2-2 alone can significantly increase oleic acid-enriched oil accumulation in tobacco leaves without negative impact on other agronomy traits, showing CeDGAT2-2 as the desirable target gene in metabolic engineering to enrich oil and value-added lipids in high-biomass plants for commercial production of biofuel oils.


1992 ◽  
Vol 285 (2) ◽  
pp. 557-562 ◽  
Author(s):  
T Liang ◽  
S Liao

Human or rat microsomal 5 alpha-reductase activity, as measured by enzymic conversion of testosterone into 5 alpha-dihydrotestosterone or by binding of a competitive inhibitor, [3H]17 beta-NN-diethulcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one ([3H]4-MA) to the reductase, is inhibited by low concentrations (less than 10 microM) of certain polyunsaturated fatty acids. The relative inhibitory potencies of unsaturated fatty acids are, in decreasing order: gamma-linolenic acid greater than cis-4,7,10,13,16,19-docosahexaenoic acid = cis-6,9,12,15-octatetraenoic acid = arachidonic acid = alpha-linolenic acid greater than linoleic acid greater than palmitoleic acid greater than oleic acid greater than myristoleic acid. Other unsaturated fatty acids such as undecylenic acid, erucic acid and nervonic acid, are inactive. The methyl esters and alcohol analogues of these compounds, glycerols, phospholipids, saturated fatty acids, retinoids and carotenes were inactive even at 0.2 mM. The results of the binding assay and the enzymic assay correlated well except for elaidic acid and linolelaidic acid, the trans isomers of oleic acid and linoleic acid respectively, which were much less active than their cis isomers in the binding assay but were as potent in the enzymic assay. gamma-Linolenic acid had no effect on the activities of two other rat liver microsomal enzymes: NADH:menadione reductase and glucuronosyl transferase. gamma-Linolenic acid, the most potent inhibitor tested, decreased the Vmax. and increased Km values of substrates, NADPH and testosterone, and promoted dissociation of [3H]4-MA from the microsomal reductase. gamma-Linolenic acid, but not the corresponding saturated fatty acid (stearic acid), inhibited the 5 alpha-reductase activity, but not the 17 beta-dehydrogenase activity, of human prostate cancer cells in culture. These results suggest that unsaturated fatty acids may play an important role in regulating androgen action in target cells.


2012 ◽  
Vol 32 (2) ◽  
pp. 234-238 ◽  
Author(s):  
Marli da Silva Santos ◽  
Obdulio Gomes Miguel ◽  
Carmen Lúcia Oliveira Petkowicz ◽  
Lys Mary Bileski Cândido

This study aimed to evaluate the antioxidant potential and fatty acid profile of gabiroba (Campomanesia xanthocarpa Berg) seeds. In order to obtain the extract, the seeds were dried, crushed, and subjected to sequential extraction by maceration and percolation in a modified soxhlet extractor using solvent polarity gradient composed of hexane, chloroform, ethyl acetate, and alcohol, respectively. The extraction time was six hours. The ethanol extract showed the highest antioxidant potential, given by the EC50 value and the amount of total phenolic compounds. High amounts of unsaturated fatty acids were found in the oil studied, especially the oleic acid.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


2015 ◽  
Vol 36 (3) ◽  
pp. 852-865 ◽  
Author(s):  
Wiebke Gehrmann ◽  
Wiebke Würdemann ◽  
Thomas Plötz ◽  
Anne Jörns ◽  
Sigurd Lenzen ◽  
...  

Background/Aims: Elevated levels of non-esterified fatty acids (NEFAs) are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. Methods: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. Results: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. Conclusion: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal β-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.


1956 ◽  
Vol 34 (1) ◽  
pp. 981-991 ◽  
Author(s):  
K. K. Carroll ◽  
R. L. Noble

Erucic acid has been found to increase the excretion of endogenously produced cholesterol in the rat with little change in the cholesterol concentration in the carcass except for increased concentrations in the adrenals and liver. The fecal cholesterol was identified by melting point and infrared spectrum after isolation by chromatography on alumina. It does not appear to originate in the liver since no increase was observed in the biliary excretion of cholesterol. Other homologues of oleic acid, namely eicosenoic and nervonic acid, produced similar changes in fecal cholesterol excretion, although oleic acid itself had little effect. A series of saturated fatty acids from butyric (C4) to behenic (C22) were tested and the longer chain members found to cause some increase in cholesterol excretion. Ester cholesterol accounted for much of the observed increases but varied greatly in the experiments with unsaturated fatty acids. A preparation of cerebrosides from beef spinal cord also increased the amount of cholesterol excreted in the feces. The fatty acid fraction from this preparation gave a similar result, although the cerebrosides gave rise mainly to free cholesterol and the fatty acid fraction to ester cholesterol.


2020 ◽  
Vol 295 (14) ◽  
pp. 4488-4497 ◽  
Author(s):  
Alexander L. Ticho ◽  
Pooja Malhotra ◽  
Christopher R. Manzella ◽  
Pradeep K. Dudeja ◽  
Seema Saksena ◽  
...  

The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne–palmitic acid (100 μm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 μm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 μm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne–oleic acid (100 μm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.


Sign in / Sign up

Export Citation Format

Share Document