Bee collected pollen as a value-added product rich in bioactive compounds and unsaturated fatty acids: A comparative study from Turkey and Romania

LWT ◽  
2021 ◽  
pp. 111925
Author(s):  
Rodica Mărgăoan ◽  
Aslı Özkök ◽  
Şaban Keskin ◽  
Nazlı Mayda ◽  
Adriana Cristina Urcan ◽  
...  
2020 ◽  
Vol 16 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Natalia Manousi ◽  
Erwin Rosenberg ◽  
George A. Zachariadis ◽  
Victoria F. Samanidou

Background:: Nuts have been incorporated into guidelines for healthy eating since they contain considerable amounts of antioxidants and their effects are related to health benefits since they contribute to the prevention of nutritional deficiencies. The micronutrient characterization is based mainly on the determination of phenolics which is the most abundant class of bioactive compounds in nuts. Terpenes constitute another class of bioactive compounds that are present in nuts and show high volatility. The analysis of phenolic compounds and terpenes are very demanding tasks that require optimization of the chromatographic conditions to improve the separation of the components. Moreover, nuts are rich in unsaturated fatty acids and they are therefore considered as cardioprotective. Gas chromatography is the predominant instrumental analytical technique for the determination of derivatized fatty acids and terpenes in food matrices, while high performance liquid chromatography is currently the most popular technique for the determination of phenolic compounds Objective:: This review summarizes all the recent advances in the optimization of the chromatographic conditions for the determination of phenolic compounds, fatty acids and terpenes in nuts Conclusion:: The state-of-the art in the technology available is critically discussed, exploring new analytical approaches to reduce the time of analysis and improve the performance of the chromatographic systems in terms of precision, reproducibility, limits of detection and quantification and overall quality of the results


2020 ◽  
Vol 21 (6) ◽  
pp. 2106
Author(s):  
Yan Zhang ◽  
Hui Wang ◽  
Ruigang Yang ◽  
Lihao Wang ◽  
Guanpin Yang ◽  
...  

Eukaryotic filamentous yellow-green algae from the Tribonema genus are considered to be excellent candidates for biofuels and value-added products, owing to their ability to grow under autotrophic, mixotrophic, and heterotrophic conditions and synthesize large amounts of fatty acids, especially unsaturated fatty acids. To elucidate the molecular mechanism of fatty acids and/or establish the organism as a model strain, the development of genetic methods is important. Towards this goal, here, we constructed a genetic transformation method to introduce exogenous genes for the first time into the eukaryotic filamentous alga Tribonema minus via particle bombardment. In this study, we constructed pSimple-tub-eGFP and pEASY-tub-nptⅡ plasmids in which the green fluorescence protein (eGFP) gene and the neomycin phosphotransferase Ⅱ-encoding G418-resistant gene (nptⅡ) were flanked by the T. minus-derived tubulin gene (tub) promoter and terminator, respectively. The two plasmids were introduced into T. minus cells through particle-gun bombardment under various test conditions. By combining agar and liquid selecting methods to exclude the pseudotransformants under long-term antibiotic treatment, plasmids pSimple-tub-eGFP and pEASY-tub- nptⅡ were successfully transformed into the genome of T. minus, which was verified using green fluorescence detection and the polymerase chain reaction, respectively. These results suggest new possibilities for efficient genetic engineering of T. minus for future genetic improvement.


2015 ◽  
Vol 61 (2) ◽  
pp. 14-29 ◽  
Author(s):  
Mouna Ben Farhat ◽  
Rym Chaouch -Hamada ◽  
Ahmed Landoulsi

Summary A comparative study of the oil yield and fatty acid composition of three Salvia species seeds collected in different locations has been conducted. Seed oil extraction was made using a Soxhlet-extractor and fatty acid analysis was undertaken using a GC-FID. The effect of the collecting site on oil yield, as well as the content of individual fatty acid and total fatty acid and fatty acid content was significant. Seed oil yield varied from 14.94 to 22.83% and the total fatty acids ranged from 67.36 to 82.49 mg/g DW. α-Linolenic (24.02-49.19%), linoleic (20.13-42.88%), oleic (12.97-17.81%) and palmitic (8.37-16.63%) acids were the most abundant fatty acids in all analyzed samples. α-Linolenic acid was found to be the major fatty acid in S. verbenaca and S. officinalis species, however, S. aegyptiaca was characterized by the prevalence of linoleic acid. Among the unsaturated fatty acids, which were represented in all samples in high amounts (78.16-89.34%), the polyunsaturated fatty acids (α-linolenic and linoleic acids) showed important levels ranging from 63.09 to 74.71%. Seeds of S. verbenaca were the richest in polyunsaturated fatty acids.


2020 ◽  
Vol 11 (1) ◽  
pp. 8018-8033

The aim of this study was to select fungal strains and alternative substrates to increase the production of bioactive compounds by solid-state bioprocessing using soybeans. Initially, from a total of 17 fungi strains, R. oligosporus NRRL 3267, R. oligosporus NRRL 2710, and R. arrhizus NRRL 2582 were pre-selected for presenting the greatest antioxidant activities during soybean fermentation. The three Rhizopus strains were cultured in soybeans supplemented with different cereal grains (brown rice, wheat, corn, and oat) aiming to achieve a higher antioxidant activity. Soybean supplementation with brown rice increased the concentration of phenolic compounds (0.697 to 6.447 mg GAE g-1) significantly compared with the only use of soybean (1.792 to 3.10 mg GAE g-1), using R. oligosporus NRRL 2710. The improved fungal-mediated biotransformation process (R. oligosporus NRRL 2710 with soybeans and brown rice) generated an isoflavone aglycone-rich product, containing different antioxidant compounds, such as trans-cinnamic acid, gallic acid, myricetin, quercetin, and kaempferol. The fermented substrate also showed great potential to inhibit hyaluronidase enzyme (anti-inflammatory activity) and against CaCo-2 tumor cells growth (antitumor activity). The resulting compound could serve as a value-added food and/or feed ingredient and a rich source of bioactive compounds.


2021 ◽  
Author(s):  
Matthew Donald Hinnecke

Due to the exponential growth of the human population and declining environmental quality in the world, waste derived volatile fatty acids (VFAs) have been identified as a source for the production of value-added products. Throughout this paper, different technologies for the production of value-added products from VFAs, various high content VFA waste streams and value-added products from each process will be discussed. Additionally, an in-depth literature review will be conducted on 5 value added products from VFAs. Highlights of various experiments will be identified as well as common trends in experiments to date. Some considerations will also be given to particular strategies and methods which may enhance the production of a value-added product in the future. Even through the uncertainty it has been proven that waste derived VFAs are a major candidate in contributing to a more environmentally and sustainable society in the immediate future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessandra Mazzocchi ◽  
Valentina De Cosmi ◽  
Patrizia Risé ◽  
Gregorio Paolo Milani ◽  
Stefano Turolo ◽  
...  

Diet and inflammatory response are recognized as strictly related, and interest in exploring the potential of edible fats and oils for health and chronic diseases is emerging worldwide. Polyunsaturated fatty acids (PUFAs) present in fish oil (FO), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be partly converted into oxygenated bioactive lipids with anti-inflammatory and/or pro-resolving activities. Moreover, the co-presence of phenolic compounds and vitamins in edible oils may prevent the development of chronic diseases by their anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory activities. Finally, a high content in mono-unsaturated fatty acids may improve the serum lipid profile and decrease the alterations caused by the oxidized low-density lipoproteins and free radicals. The present review aims to highlight the role of lipids and other bioactive compounds contained in edible oils on oxidative stress and inflammation, focusing on critical and controversial issues that recently emerged, and pointing to the opposing role often played by edible oils components and their oxidized metabolites.


2021 ◽  
Author(s):  
Matthew Donald Hinnecke

Due to the exponential growth of the human population and declining environmental quality in the world, waste derived volatile fatty acids (VFAs) have been identified as a source for the production of value-added products. Throughout this paper, different technologies for the production of value-added products from VFAs, various high content VFA waste streams and value-added products from each process will be discussed. Additionally, an in-depth literature review will be conducted on 5 value added products from VFAs. Highlights of various experiments will be identified as well as common trends in experiments to date. Some considerations will also be given to particular strategies and methods which may enhance the production of a value-added product in the future. Even through the uncertainty it has been proven that waste derived VFAs are a major candidate in contributing to a more environmentally and sustainable society in the immediate future.


RSC Advances ◽  
2020 ◽  
Vol 10 (55) ◽  
pp. 33378-33388
Author(s):  
Danh C. Vu ◽  
Trang H. D. Nguyen ◽  
Thi L. Ho

Black walnut contains a diverse mixture of bioactive compounds, including phenolics, phytosterols, unsaturated fatty acids, and tocopherols potentially important to human health.


Sign in / Sign up

Export Citation Format

Share Document