scholarly journals Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3156 ◽  
Author(s):  
Giulia Auriemma ◽  
Paola Russo ◽  
Pasquale Del Gaudio ◽  
Carlos A. García-González ◽  
Mariana Landín ◽  
...  

Polysaccharide-based hydrogel particles (PbHPs) are very promising carriers aiming to control and target the release of drugs with different physico-chemical properties. Such delivery systems can offer benefits through the proper encapsulation of many drugs (non-steroidal and steroidal anti-inflammatory drugs, antibiotics, etc) ensuring their proper release and targeting. This review discusses the different phases involved in the production of PbHPs in pharmaceutical technology, such as droplet formation (SOL phase), sol-gel transition of the droplets (GEL phase) and drying, as well as the different methods available for droplet production with a special focus on prilling technique. In addition, an overview of the various droplet gelation methods with particular emphasis on ionic cross-linking of several polysaccharides enabling the formation of particles with inner highly porous network or nanofibrillar structure is given. Moreover, a detailed survey of the different inner texture, in xerogels, cryogels or aerogels, each with specific arrangement and properties, which can be obtained with different drying methods, is presented. Various case studies are reported to highlight the most appropriate application of such systems in pharmaceutical field. We also describe the challenges to be faced for the breakthrough towards clinic studies and, finally, the market, focusing on the useful approach of safety-by-design (SbD).

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Emanuele Mauri ◽  
Sara Maria Giannitelli ◽  
Marcella Trombetta ◽  
Alberto Rainer

Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.


2014 ◽  
Vol 70 (2) ◽  
Author(s):  
Mohamad Azuwa Mohamed ◽  
Wan Norharyati Wan Salleh ◽  
Juhana Jaafar ◽  
Norhaniza Yusof

The evolution of desirable physico-chemical properties in high performance photocatalyst materials involves steps that must be carefully designed, controlled, and optimized. This study investigated the role of key parameter in the preparation and photocatalytic activity analysis of the mixed phase of anatase/rutile TiO2 nanoparticles, prepared via sol-gel method containing titanium-n-butoxide Ti(OBu)4 as a precursor material, nitric acid as catalyst, and isopropanol as solvent. The prepared TiO2 nanoparticles were characterized by means of XRD, SEM, and BET analyses, and UV-Vis-NIR spectroscopy. The results indicated that the calcination temperature play an important role in the physico-chemical properties and photocatalytic activity of the resulting TiO2 nanoparticles. Different calcination temperatures would result in different composition of anatase and rutile. The photocatalytic activity of the prepared mixed phase of anatase/rutile TiO2 nanoparticles was measured by photodegradation of 50 ppm phenol in an aqueous solution. The commercial anatase from Sigma-Aldrich and Degussa P25 were used for comparison purpose. The mixed phase of anatase/rutile TiO2 nanoparticles (consists of 38.3% anatase and 61.7% rutile) that was prepared at 400°C exhibited the highest photocatalytic activity of 84.88% degradation of phenol. The result was comparable with photocatalytic activity demonstrated by Degussa P25 by 1.54% difference in phenol degradation. The results also suggested that the mixed phase of anatase/rutile TiO2 nanoparticles is a promising candidate for the phenol degradation process. The high performance of photocatalyst materials may be obtained by adopting a judicious combination of anatase/rutile and optimized calcination conditions.


2019 ◽  
Vol 6 (5) ◽  
pp. 249-258 ◽  
Author(s):  
U D’Amora ◽  
A Ronca ◽  
M G Raucci ◽  
S M Dozio ◽  
H Lin ◽  
...  

Abstract The main driving idea of the present study was the comparison between two different chemical modifications of hyaluronic acid (HA) followed by the development of nanocomposite hydrogels directly in situ by biomineralization of photocrosslinkable HA polymers through sol-gel synthesis. In this way, it has been possible to overcome some limitations due to classical approaches based on the physical blending of inorganic fillers into polymer matrix. To this aim, methacrylated and maleated HA, synthesized with similar degree of substitution (DS) were compared in terms of mechanical and physico-chemical properties. The success of in situ biomineralization was highlighted by reflect Fourier transform infrared spectroscopy and thermogravimetric analysis. Furthermore, mechanical characterization demonstrated the reinforcing effect of inorganic fillers evidencing a strong correlation with DS. The swelling behavior resulted to be correlated with filler concentration. Finally, the cytotoxicity tests revealed the absence of toxic components and an increase of cell proliferation over culture time was observed, highlighting these bio-nanocomposite hyaluronan derivatives as biocompatible hydrogel with tunable properties.


2015 ◽  
Vol 1107 ◽  
pp. 267-271
Author(s):  
Sodipo Bashiru Kayode ◽  
Azlan Abdul Aziz

The science of core-shell nanoparticles requires investigation into several physical and chemical properties of the composite nanoparticles. Unlike the conventional sol-gel or the reverse microemulsion micelle method, we presented here a non-seeded process of encapsulating superparamagnetic magnetite nanoparticles (SPMN) with silica. Physico-chemical analysis of the product was used to confirm the result of the coating procedure. Colloidal suspension of SPMN and silica nanoparticles were synthesised through coprecipitation method and modified Stöber method respectively. Afterwards, both colloidal suspensions of SPMN and silica nanoparticles were sonicated to encapsulate the SPMN with silica. Elemental mapping of the composite particles with electron spectroscopy imaging (ESI) confirmed the core-shell micrograph of the SPMN and silica. The X-ray diffraction pattern (XRD) showed the silica shell to be in amorphous form. FTIR analysis further confirmed the chemical properties of the product to be silica coated SPMN.


2008 ◽  
Vol 52-53 ◽  
pp. 27-33 ◽  
Author(s):  
Rubiane C. Pinheiro ◽  
Cleide M.F. Soares ◽  
Onélia A.A. dos Santos ◽  
Heizir F. de Castro ◽  
Flavio F. de Moraes ◽  
...  

2014 ◽  
Vol 896 ◽  
pp. 153-158
Author(s):  
Anis Kristiani ◽  
Kiky C. Sembiring ◽  
Fauzan Aulia ◽  
Joddy Arya Laksmono ◽  
Silvester Tursiloadi ◽  
...  

A series of sulfated zirconia was prepared through sol gel method in alcohol medium. Porosity of the catalyst was developed in two different methods, which were immersion of cetyltrimethyl ammonium chloride (CTAC) surfactant as templating agent and Supercritical Fluid Extraction (SFE). The physico-chemical properties of the catalysts were characterized by Thermal Gravimetric-Differential Thermal Analysis (TG-DTA), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) and gravimetry method for acidity measurement following by the adsorption of organic bases. The characterization results show that different method of immersing CTAC surfactant and SFE affecting physical and chemical properties, i.e. crystalinity, surface area, pore size, pore volume and acidity.


RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 81429-81437 ◽  
Author(s):  
Gibin George ◽  
S. Anandhan

Physico–chemical characteristics of cobalt oxide nanofibres were tailored by varying the sacrificial polymeric binder in sol–gel electrospinning.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 91 ◽  
Author(s):  
Boxue Zhang ◽  
Shengxin Cao ◽  
Meiqi Du ◽  
Xiaozhou Ye ◽  
Yun Wang ◽  
...  

Hierarchical TiO2 superstructures with desired architectures and intriguing physico-chemical properties are considered to be one of the most promising candidates for solving the serious issues related to global energy exhaustion as well as environmental deterioration via the well-known photocatalytic process. In particular, TiO2 mesocrystals, which are built from TiO2 nanocrystal building blocks in the same crystallographical orientation, have attracted intensive research interest in the area of photocatalysis owing to their distinctive structural properties such as high crystallinity, high specific surface area, and single-crystal-like nature. The deeper understanding of TiO2 mesocrystals-based photocatalysis is beneficial for developing new types of photocatalytic materials with multiple functionalities. In this paper, a comprehensive review of the recent advances toward fabricating and modifying TiO2 mesocrystals is provided, with special focus on the underlying mesocrystallization mechanism and controlling rules. The potential applications of as-synthesized TiO2 mesocrystals in photocatalysis are then discussed to shed light on the structure–performance relationships, thus guiding the development of highly efficient TiO2 mesocrystal-based photocatalysts for certain applications. Finally, the prospects of future research on TiO2 mesocrystals in photocatalysis are briefly highlighted.


Sign in / Sign up

Export Citation Format

Share Document