scholarly journals A Comprehensive Study of the Impacts of Oat β-Glucan and Bacterial Curdlan on the Activity of Commercial Starter Culture in Yogurt

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5411
Author(s):  
Marek Aljewicz ◽  
Małgorzata Majcher ◽  
Beata Nalepa

This study provides important information about the impacts of various levels of oat (OBG) and bacterial (curdlan) β-glucan and fat contents in milk on survivability and metabolism of yogurt starter cultures. The results show that addition of β-glucans in the concentration higher than 0.25% reduced starter bacterial counts during storage and prolonged the milk acidification process. A significant increase in lactose consumption by starter cultures was noted in the yogurt samples with OBG addition up to 0.75%. The highest (by 567% on average) increase in lactic acid content was noted in the control yogurts. Whereas the lowest (by 351%) increase in lactic acid content was noted in yogurts with OBG. After 28-day storage, the acetic aldehyde content was significantly influenced by fat content, type and addition level of polysaccharide. A higher increase in acetoin content was noted in samples with 0.25% than in samples with 1% of polysaccharides. In turn, significantly lower increases in diacetyl and 2,3-pentanedione contents were observed in the yogurt samples with OBG than in these with curdlan, with diacetyl production increase along with the higher concentration of the polysaccharide. The addition of OBG and curdlan to milk contributed to differences in the starter culture metabolism, consequently, in the milk acidification dynamics.

2012 ◽  
Vol 78 (24) ◽  
pp. 8571-8578 ◽  
Author(s):  
Z. Lu ◽  
I. M. Pérez-Díaz ◽  
J. S. Hayes ◽  
F. Breidt

ABSTRACTTo reduce high-salt waste from cucumber fermentations, low-salt fermentations are under development. These fermentations may require the use of starter cultures to ensure normal fermentations. Because potential phage infection can cause starter culture failure, it is important to understand phage ecology in the fermentations. This study investigated the phage ecology in a commercial cucumber fermentation. Brine samples taken from a fermentation tank over a 90-day period were plated onto deMan-Rogosa-Sharpe agar plates. A total of 576 lactic acid bacterial isolates were randomly selected to serve as potential hosts for phage isolation. Filtered brine served as a phage source. Fifty-seven independent phage isolates were obtained, indicating that 10% of the bacterial isolates were sensitive to phage attack. Phage hosts includeLactobacillus brevis(67% of all hosts),Lactobacillus plantarum(21%),Weissella paramesenteroides,Weissella cibaria, andPediococcus ethanolidurans. Nearly 50% of phages were isolated on day 14, and the majority of them attackedL. brevis. Some phages had a broad host range and were capable of infecting multiple hosts in two genera. Other phages were species specific or strain specific. About 30% of phage isolates produced turbid pinpoint plaques or only caused reduced cell growth on the bacterial lawns. Six phages with distinct host ranges were characterized. The data from this study showed that abundant and diverse phages were present in the commercial cucumber fermentation, which could cause significant mortality to the lactic acid bacteria population. Therefore, a phage control strategy may be needed in low-salt cucumber fermentations.


2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2013 ◽  
Vol 79 (18) ◽  
pp. 5670-5681 ◽  
Author(s):  
Philipp Adler ◽  
Christoph Josef Bolten ◽  
Katrin Dohnt ◽  
Carl Erik Hansen ◽  
Christoph Wittmann

ABSTRACTIn the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains ofL. fermentumandL. plantarumrevealed major differences in their fluxes. TheL. fermentumstrains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas onlyL. fermentumNCC 575 used fructose to form mannitol. In contrast,L. plantarumstrains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of differentL. fermentumandL. plantarumstrains indicated a dominant (96%) contribution ofL. fermentumNCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures.L. fermentumNCC 575 might be one candidate due to its superior performance in flux activity.


1935 ◽  
Vol 110 (3) ◽  
pp. 637-642
Author(s):  
Bennett F. Avery ◽  
Stanley E. Kerr ◽  
Musa Ghantus

2012 ◽  
Vol 78 (15) ◽  
pp. 5395-5405 ◽  
Author(s):  
Gilberto Vinícius de Melo Pereira ◽  
Maria Gabriela da Cruz Pedrozo Miguel ◽  
Cíntia Lacerda Ramos ◽  
Rosane Freitas Schwan

ABSTRACTSpontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (withSaccharomyces cerevisiaeas the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentumandLactobacillus plantarumwere the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicaliswas the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strainsL. fermentumUFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol),S. cerevisiaeUFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), andAcetobacter tropicalisUFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.


2017 ◽  
Vol 17 (1) ◽  
pp. 5
Author(s):  
Agus Safari ◽  
Sarah Fahma Ghina ◽  
Sadiah Djajasoepena ◽  
O. Suprijana ' ◽  
Ida Indrawati ◽  
...  

Mixed lactic acid bacteria culture is commonly used in yogurt production. In the present study, two lactic acid bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) was used as starter culture. Calcium carbonate was added to the starter culture to increase the quality of mixed starter culture of L. bulgaricus and S. thermophillus with ratio of 4:1. The present study was directed to investigate the chemical composition of mixed starter culture with and without calcium carbonat addition. Furthermore, the effect of each starter culture on yogurt product chemical composition was also examined. The pH, lactose, soluble protein and acid content was determined as chemical composition parameters. For starter culture without calcium carbonate addition, the yogurt has pH, lactose, soluble protein and acid content of 4.18–4.39, 4.18–4.39% w/v, 2.88–4.36% w/v and 0.82–0.99% w/v, respectively. While for starter culture with calcium carbonate addition, the yogurt product has pH, lactose, soluble protein and acid content of 4.26–4.37, 1.47–1.75% b/v, 3.42–4.95% w/v and 0.86–1.11% w/v, respectively. Addition of 0.05% w/v calcium carbonate to mixed starter culture gave effect on lactose consumption, where it still can convert lactose to lactic acid up to 45 days of storage. Furthermore, the yogurt product made with starter culture with calcium carbonate addition has higher soluble protein content compared to yogurt made with starter culture without calcium carbonate addition


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yoshimura K ◽  
Inoue Y ◽  
Koizumi A ◽  
Suzuki M ◽  
Itakura S ◽  
...  

Purpose: The aims of this study were to prepare a 0.1% Miconazole (MCZ) eye-drop solution and to evaluate the stability and physical properties of the preparation.


Sign in / Sign up

Export Citation Format

Share Document