scholarly journals Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 796
Author(s):  
Venkatesha Narayanaswamy ◽  
Sangaraju Sambasivam ◽  
Alam Saj ◽  
Sulaiman Alaabed ◽  
Bashar Issa ◽  
...  

Magnetite (Fe3O4) nanoparticles were synthesized using the chemical coprecipitation method. Several nanoparticle samples were synthesized by varying the concentration of iron salt precursors in the solution for the synthesis. Two batches of nanoparticles with average sizes of 10.2 nm and 12.2 nm with nearly similar particle-size distributions were investigated. The average particle sizes were determined from the XRD patterns and TEM images. For each batch, several samples with different particle concentrations were prepared. Morphological analysis of the samples was performed using TEM. The phase and structure of the particles of each batch were studied using XRD, selected area electron diffraction (SAED), Raman and XPS spectroscopy. Magnetic hysteresis loops were obtained using a Lakeshore vibrating sample magnetometer (VSM) at room temperature. In the two batches, the particles were found to be of the same pure crystalline phase of magnetite. The effects of particle size, size distribution, and concentration on the magnetic properties and magneto thermic efficiency were investigated. Heating profiles, under an alternating magnetic field, were obtained for the two batches of nanoparticles with frequencies 765.85, 634.45, 491.10, 390.25, 349.20, 306.65, and 166.00 kHz and field amplitudes of 100, 200, 250, 300 and 350 G. The specific absorption rate (SAR) values for the particles of size 12.2 nm are higher than those for the particles of size 10.2 nm at all concentrations and field parameters. SAR decreases with the increase of particle concentration. SAR obtained for all the particle concentrations of the two batches increases almost linearly with the field frequency (at fixed field strength) and nonlinearly with the field amplitude (at fixed field frequency). SAR value obtained for magnetite nanoparticles with the highest magnetization is 145.84 W/g at 765.85 kHz and 350 G, whereas the SAR value of the particles with the least magnetization is 81.67 W/g at the same field and frequency.

2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


2010 ◽  
Vol 8 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
Raúl Reza ◽  
Carlos Martínez Pérez ◽  
Claudia Rodríguez González ◽  
Humberto Romero ◽  
Perla García Casillas

AbstractIn this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.


2015 ◽  
Vol 1107 ◽  
pp. 301-307 ◽  
Author(s):  
Salahudeen A. Gene ◽  
Elias B. Saion ◽  
Abdul Halim Shaari ◽  
Mazliana A. Kamarudeen ◽  
Naif Mohammed Al-Hada

The fabrication of nanospinel zinc chromite (ZnCr2O4) crystals by the means of thermal treatment method from an aqueous solution containing metal nitrates, polyvinyl pyrrolidone (PVP), and deionized water was described in this study. The samples were calcined at various temperatures ranging from 773 to 973 K for the decomposition of the organic compounds and crystallization of the nanocrystals. PVP was used as capping agent to control the agglomeration of the particles. The characterization studies of the fabricated samples were carried out by X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), energy dispersed X-ray spectroscopy (EDX) and electron spin resonance spectroscopy (ESR). The corresponding peaks of Zn, Cr and O were observed in the EDX spectrum of the sample which confirms the formation of ZnCr2O4. The XRD patterns also confirmed the formation of the single faced nanocrystallines of spinel ZnCr2O4 with a face-centered cubic structure. The average particle size of the synthesized crystals was also determined from the XRD patterns using the Scherers formula which shows that the crystallite sizes increases with increase in calcination temperature and was in good agreement with the TEM images which shows cubical ZnCr2O4 nanocrystals with uniform morphology and particle size distributions. The ESR spectra confirmed the existence of unpaired electron in the fabricated samples and the increase in g-factor and decreases in resonant magnetic field (Hr) were observed as the calcination temperature increases.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650247 ◽  
Author(s):  
Mahdi Ghasemifard ◽  
Misagh Ghamari ◽  
Meysam Iziy

TiO2-(Ti[Formula: see text]Si[Formula: see text]O2 nanopowders (TS-NPs) with average particle size around 90 nm were successfully synthesized by controlled auto-combustion method by using citric acid/nitric acid (AC:NA) and urea/metal cation (U:MC). The structure of powders was studied based on their X-ray diffraction (XRD) patterns. The XRD of TS-NPs shows that rutile and anatase are the main phases of TS-NPs for AC:NA and U:MC, respectively. Particle size and histogram of nanopowders were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Optical properties of TS-NPs were calculated by Fourier transform infrared spectroscopy (FTIR) and Kramers–Kroning (KK) relation. Plasma frequencies of TS-NPs obtained from energy loss functions depend on fuels as a result of changes in crystal structure, particle size distribution, and morphology.


2006 ◽  
Vol 962 ◽  
Author(s):  
Qi Zeng ◽  
Ian Baker ◽  
Jack Hoopes

ABSTRACTThe structural and quasi-static magnetic behaviors and the temperature rises of three Dextran-coated maghemite nanoparticles subjected to alternating magnetic field (AMF) were investigated for potential use in magnetic hyperthermia treatments. In order to elucidate the effect of the hydrodynamic particle size on the specific absorption rate, the temperature rises for various hydrodynamic particle sizes were investigated in AMFs of various strengths and frequencies. Structural characterization was performed using a TEM and a SEM as well as by dynamic light scattering, and the quasi-static magnetic hysteresis loops were measured using a VSM. The heating behavior is discussed in relation to the magnetic behavior and particle size. While it was found that the heating mechanism for the ferromagnetic particles was mainly magnetic hysteresis losses, Brownian relaxation losses also contributed to the heating.


2017 ◽  
Vol 751 ◽  
pp. 611-616
Author(s):  
Rewadee Wongmaneerung

The overall aim of this study is to establish the inter-relationships between phase formations, mechanical properties and magnetic properties of the novel ceramic in hydroxyapatite system for biomaterial applications. First, barium hexaferrite and strontium hexaferrite powders were prepared as M-type hexaferrite phases. Hydroxyapatite was prepared from cockle shells via co-precipitation method. After that, a combination between hydroxyapatite+barium hexaferrite and hydroxyapatite+strontium hexaferrite was mixed together then shaping and sintering at 1200 °C for 2 h. The sintered samples were characterized phase formation, mechanical and magnetic properties by using X-ray diffraction (XRD), Universal testing and VSM measurements, respectively. XRD patterns for all samples showed a combination between hydroxyapatite and hexaferrite phases. Compressive strength of all samples tends to increase with increasing of the amount of hexaferrite phases due to densification mechanism. However, the increasing of these values, it appears that there is no difference in the statistical significant. For magnetic properties, the coexistence of barium hexaferrite and strontium hexaferrite phases reveals magnetic hysteresis loops, showing the change from diamagnetic to ferromagnetic behavior.


2014 ◽  
Vol 602-603 ◽  
pp. 951-955
Author(s):  
Zheng Qiang Zhang ◽  
Qing Lin Xia ◽  
Guang Hua Guo ◽  
Hai Fa Zhang ◽  
Cun Jun Dong

Polycrystalline Ti-Co co-substituted M-type ferrites Ba (TiCo)xFe12-2xO19 (x=0.25,0.5, 0.75, 1.0 ) samples were prepared by the citrate precursor method. The particle structure and morphology of the products were characterized by X-ray powder diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM). The effects of the substitution rate on the magnetic properties of samples were analysed by magnetic measurement with the Vibrating Sample Magnetometer (VSM) of Physical Properties Measurement System (PPMS). The XRD patterns show that only one type of crystalline phase can be detected and the substitution did not change the crystal structure. The SEM micrographs of Ba (TiCo)xFe12-2xO19 calcined at 450 °C for 5h, and then 950°C for 5h show that the M-type ferrite particles were homogeneously shaped and the grain sizes had no obvious differences when the substitution rate changed. The magnetic hysteresis loops illustrate that the coercivity (Hc) decreased rapidly with the increasing of Ti-Co substitution, while the saturation magnetization (Ms) changed slowly.


2021 ◽  
Vol 27 (1) ◽  
pp. 119-124
Author(s):  
Wenzheng XU ◽  
Hao LI ◽  
Xin LIANG ◽  
Jie WANG ◽  
Jinyu PENG ◽  
...  

In this paper, the ultrafine β-hexanitrohexaazaisowurtzitane (β – CL – 20) particles were prepared by spray drying method. The CL – 20 samples were characterized by scanning electron microscope (SEM), particle size analyzer, X-ray diffraction (XRD), and Differential Scanning Calorimeter (DSC). Furthermore, the safety properties of samples under impact and thermal stimulus were tested and analyzed. The results of SEM showed that the average particle size of ultrafine CL – 20 particles with a narrow particle size distribution, were about 320 nm, and the shape was elliptical. The XRD patterns indicated that the polymorphic phase of ultrafine particles was mainly β-type. Compared with that of raw CL – 20, the impact sensitivity of the ultrafine CL – 20 had been decreased significantly, for the drop height (H50) was increased from 13.0 to 33.5 cm. The critical explosion temperature of the ultrafine CL – 20 decreased from 232.16 ℃ to 227.93 ℃, indicating that the thermal stability of the ultrafine CL – 20 is lower than that of raw CL – 20.


2012 ◽  
Vol 476-478 ◽  
pp. 1206-1209
Author(s):  
Xiao Ju Yao ◽  
Zhi Qiang Wei ◽  
Hua Yang ◽  
Li Gang Liu

In the protecting inert gas, Fe nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the samples by this process distributed uniform with spherical chain shapes, the crystal structure is body centered cubic (BCC) structure as same as the bulk materials, the particle size distribution ranging from 20 to 70 nm, with an average particle size about 39 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 17.5 m2/g.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yujing Ou ◽  
Peiqing La ◽  
Dandan Zhu ◽  
Yalong Zhu

To use the salt-assisted SHS technique to prepare B powders was proposed. Calculation results found that the adiabatic combustion temperature of the B2O3-Mg reaction system was 2604 K, higher than the 1800 K criterion of self-propagating temperature, which meant that the SHS application was feasible. When 0, 10%, 20%, 30%, 40%, 50%, and 60% NaCl content were added, the adiabatic combustion temperature of the reaction system decreased linearly. When 60% NaCl content was added, the adiabatic combustion temperature was 1799 K (lower than 1800 K), unsuitable for self-propagating reaction, which was consistent with the experimental results. Through scanning electron microscope (SEM), energy disperse spectroscopy (EDS), and particle size analysis, the influence of different addition of NaCl on the morphology, average particle size, and purity of prepared B powder was investigated. EDS and chemical analysis indicated that the purity of prepared B powder was over 96% and the average particle size was within the range of 0.4~0.8 μm when the content of NaCl was 50%. The analysis of X-ray diffraction (XRD) and selected area electron diffraction (SAED) proved that the prepared B powder was amorphous.


Sign in / Sign up

Export Citation Format

Share Document