scholarly journals The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1312
Author(s):  
Marén Gültner ◽  
Regine Boldt ◽  
Petr Formanek ◽  
Dieter Fischer ◽  
Frank Simon ◽  
...  

Co-continuous blend systems of polycarbonate (PC), poly(styrene-co-acrylonitrile) (SAN), commercial non-functionalized multi-walled carbon nanotubes (MWCNTs) or various types of commercial and laboratory functionalized single-walled carbon nanotubes (SWCNTs), and a reactive component (RC, N-phenylmaleimide styrene maleic anhydride copolymer) were melt compounded in one step in a microcompounder. The blend system is immiscible, while the RC is miscible with SAN and contains maleic anhydride groups that have the potential to reactively couple with functional groups on the surface of the nanotubes. The influence of the RC on the localization of MWCNTs and SWCNTs (0.5 wt. %) was investigated by transmission electron microscopy (TEM) and energy-filtered TEM. In PC/SAN blends without RC, MWCNTs are localized in the PC component. In contrast, in PC/SAN-RC, the MWCNTs localize in the SAN-RC component, depending on the RC concentration. By adjusting the MWCNT/RC ratio, the localization of the MWCNTs can be tuned. The SWCNTs behave differently compared to the MWCNTs in PC/SAN-RC blends and their localization occurs either only in the PC or in both blend components, depending on the type of the SWCNTs. CNT defect concentration and surface functionalities seem to be responsible for the localization differences.

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 224 ◽  
Author(s):  
Jung-Eun Park ◽  
Yong-Seok Jang ◽  
Tae-Sung Bae ◽  
Min-Ho Lee

Multi walled carbon nanotubes-hydroxyapatite (MWCNTs-HA) with various contents of MWCNTs was synthesized using the sol-gel method. MWCNTs-HA composites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were generated on the surface of MWCNT. Produced MWCNTs-HA nanocomposites were coated on pure titanium (PT). Characteristic of the titanium coated MWCNTs-HA was evaluated by field-emission scanning electron microscopy (FE-SEM) and XRD. The results show that the titanium surface was covered with MWCNTs-HA nanoparticles and MWCNTs help form the crystalized hydroxyapatite. Furthermore, the MWCNTs-HA coated titanium was investigated for in vitro cellular responses. Cell proliferation and differentiation were improved on the surface of MWCNT-HA coated titanium.


2014 ◽  
Vol 2 (30) ◽  
pp. 11799-11806 ◽  
Author(s):  
Xuemei Zhou ◽  
Zhaoming Xia ◽  
Zhiyun Zhang ◽  
Yuanyuan Ma ◽  
Yongquan Qu

One-step hydrothermal synthesis of ultra-thin β-Ni(OH)2 nanoplates (1.5–3.0 nm thickness) and their composite with multi-walled carbon nanotubes in the absence of surfactants function as highly efficient and stable electrocatalysts for oxygen evolution reaction.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


2007 ◽  
Vol 334-335 ◽  
pp. 685-688
Author(s):  
Dong Lin Zhao ◽  
Xia Li ◽  
Wei Dong Chi ◽  
Zeng Min Shen

The filling of multi-walled carbon nanotubes (MWNTs) with metallic silver nanowires via wet chemistry method was investigated. The carbon nanotubes were filled with long continuous silver nanowires. The carbon nanotubes were almost opened and cut after being treated with concentrated nitric acid. Silver nitrate solution filled carbon nanotubes by capillarity. Carbon nanotubes were filled with silver nanowires after calcinations by hydrogen. The diameters of silver nanowires were in the range of 20-40nm, and lengths of 100nm-10μm. We studied the micromorphology of the silver nanowires filled in carbon nanotubes by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Based on the experimental results, a formation mechanism of the Ag nanowire-filled carbon nanotubes was proposed. And the microwave permittivity of the carbon nanotubes filled with metallic silver nanowires was measured in the frequency range from 2 GHz to 18 GHz. The loss tangent of the carbon nanotubes filled with metallic silver nanowires is high. So the carbon nanotubes filled with metallic silver nanowires would be a good candidate for microwave absorbent.


2015 ◽  
Vol 19 (04) ◽  
pp. 622-630 ◽  
Author(s):  
Saeed Rayati ◽  
Zahra Sheybanifard

In the present work, oxidation of alkenes with hydrogen peroxide in the presence of meso-tetrakis(4-hydroxyphenyl)porphyrinatoiron(III) chloride supported onto surface of functionalized multi-wall carbon nanotubes (FMWCNT), [ Fe ( THPP ) Cl@MWCNT ], is reported. The simple heterogeneous catalyst was characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and also thermal analysis. The amount of the catalyst loaded on the nanotubes was determined by atomic absorption spectroscopy. This heterogeneous catalyst proved to be an efficient and green catalyst and was successfully able to activate hydrogen peroxide without any additive toward the oxidation of alkenes in ethanol as a green solvent. Performance of the catalyst in oxidation of various alkenes was inspected under reflux, ultrasonic irradiation and mechanical stirring. Moreover, the catalyst can be reused several times under similar conditions.


2017 ◽  
Vol 76 (10) ◽  
pp. 2593-2602 ◽  
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Sedighi ◽  
Ehsan Jabbari

Abstract This paper reports a facile method for removal of sulfate from wastewater by magnetic multi-walled carbon nanotubes (MMWCNTs). Multi-walled carbon nanotubes and MMWCNTs were characterized by X-ray diffraction, Raman, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results of the analysis indicated that MMWCNTs were synthesized successfully. The MMWCNTs can be easily manipulated in a magnetic field for the desired separation, leading to the removal of sulfate from wastewater. Response surface methodology (RSM) coupled with central composite design was applied to evaluate the effects of D/C (adsorbent dosage per initial concentration of pollutant (mgadsorbent/(mg/l)initial)) and pH on sulfate removal (%). Using RSM methodology, a quadratic polynomial equation was obtained, for removal of sulfate, by multiple regression analysis. The optimum combination for maximum sulfate removal of 93.28% was pH = 5.96 and D/C = 24.35. The experimental data were evaluated by the Langmuir and Freundlich adsorption models. The adsorption capacity of sulfate in the studied concentration range was 56.94 (mg/g). It was found out that the MMWCNTs could be considered as a promising adsorbent for the removal of sulfate from wastewater.


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


Sign in / Sign up

Export Citation Format

Share Document