scholarly journals Effect of Elicitation with Iron Chelate and Sodium Metasilicate on Phenolic Compounds in Legume Sprouts

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1345
Author(s):  
Henryk Dębski ◽  
Wiesław Wiczkowski ◽  
Marcin Horbowicz

Seven-day-old sprouts of fenugreek (Trigonella foenum-graecum L.), lentil (Lens culinaris L.), and alfalfa (Medicagosativa L.) were studied. The legume seeds and then sprouts were soaked each day for 30 min during 6 days with water (control) or mixture of Fe-EDTA and sodium silicate (Optysil), or sodium silicate (Na-Sil) alone. Germination and sprout growing was carried out at temperature 20 ± 2 °C in 16/8 h (day/night) conditions. Phenolic compounds (free, ester, and glycosides) content were determined by HPLC-ESI-MS/MS using a multiple reaction monitoring of selected ions. Flavonoids and phenolic acids were released from their esters after acid hydrolysis and from glycosides by alkaline hydrolysis. The presence and high content of (−)-epicatechin (EC) in fenugreek sprouts was demonstrated for the first time. Applied elicitors decreased the level of free EC in fenugreek and alfalfa sprouts but enhanced the content of its esters. Besides, elicitors decreased the content of quercetin glycosides in lentil and fenugreek sprouts but increased the content of quercetin and apigenin glycosides in alfalfa sprouts. The applied elicitors decreased the glycoside levels of most phenolic acids in lentil and p-hydroxybenzoic acid in fenugreek, while they increased the content of this acid in alfalfa. The mixture of iron chelate and sodium silicate had less effect on changes in flavonoid and phenolic acid content in legume sprouts than silicate alone. In general, the used elicitors increased the content of total phenolic compounds in fenugreek and alfalfa sprouts and decreased the content in lentil sprouts. Among the evaluated elicitors, Optysil seems to be worth recommending due to the presence of iron chelate, which can be used to enrich sprouts with this element.

2020 ◽  
Vol 14 (01) ◽  
pp. 91
Author(s):  
Nurud Diniyah ◽  
Sang-Han Lee

Legumes are good dietary source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Flavonoids, phenolic acids and condensed tannins are the main phenolic compounds that are provide in legume seeds. Majority of the phenolic compounds are serving in the legume seed coats. The majority of seed coat of legume seeds are phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat) are catechins and procyanidins. The antioxidant activity of phenolic compounds is in lineal intercourse with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly conducts to the alleviation of phenolic compounds in legumes because of chemical rearrangements. Phenolic content also lessen due to leaching of water-soluble phenolic compounds into the cooking water. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant. Keywords: antioxidant activity, legume seeds, phenolic compounds, processing


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1190
Author(s):  
Henryk Dębski ◽  
Wiesław Wiczkowski ◽  
Joanna Szablińska-Piernik ◽  
Marcin Horbowicz

The effects of elicitors on broccoli (Brassica oleracea L. var. Italica) and radish (Raphanus sativus L.) sprouts were evaluated. Seeds and then sprouts were soaked daily for 30 min over 6 days in water (control) or a mixture of FeEDTA and sodium silicate or sodium silicate alone. The contents of the flavonoids and phenolic acids (free, esters, and glycosides) were determined using HPLC-ESI-MS/MS. Phenolic compounds were released from the esters after acid hydrolysis and from the glycosides using alkaline hydrolysis. Quercetin, kaempferol, (‒)-epicatechin, naringenin, apigenin, and luteolin derivatives were found in broccoli and radish sprouts, while derivatives of iso-rhamnetin, orientin, and vitexin were not present at measurable levels. The flavonoid contents, especially derivatives of quercetin, were considerably higher in the broccoli sprouts than in the radish sprouts. The quantitatively major phenolic acid content in the sprouts of both species was found to be p-hydroxybenzoic acid. Its content in the radish sprouts was several times higher than in the broccoli sprouts. The total flavonoid content of broccoli sprouts was 507–734 µg/g DW, while that of the radish sprouts ranged from 155 µg/g DW to 211 µg/g DW. In contrast, total phenolic acids were higher in radish sprouts, ranging from 11,548 to 13,789 µg/g DW, while in broccoli sprouts, they ranged from 2652 to 4527 µg/g DW, respectively. These differences resulted radish sprouts having higher antioxidant activity compared to broccoli sprouts. The applied elicitors increased the content of the total phenolic acids and the antioxidant activity of radish and broccoli sprouts, while they decreased the level of the total flavonoids in broccoli sprouts.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1593
Author(s):  
Iván Gómez-López ◽  
Gloria Lobo-Rodrigo ◽  
María P. Portillo ◽  
M. Pilar Cano

The aim of the present study was the full characterization, quantification, and determination of the digestive stability and bioaccessibility of individual betalain and phenolic compounds of Opuntia stricta, var. Dillenii fresh fruits (peel, pulp, and whole fruit) and of the products of the industrialization to obtain jam (raw pressed juice (product used for jam formulation), by-product (bagasse), and frozen whole fruit (starting material for jam production)). Opuntia stricta var. Dillenii fruits and products profile showed 60 betalain and phenolic compounds that were identified and quantified by HPLC-DAD-ESI/MS and HPLC-DAD-MS/QTOF, being 25 phenolic acids (including isomers and derivatives), 12 flavonoids (including glycosides), 3 ellagic acids (including glycosides and derivative), and 20 betanins (including degradation compounds). In vitro gastrointestinal digestion was performed by INFOGEST® protocol. Fruit pulp showed the greater content of total betalains (444.77 mg/100 g f.w.), and jam only showed very low amounts of two betanin degradation compounds, Cyclo-dopa-5-O-β-glucoside (and its isomer) (0.63 mg/100 f.w.), and two Phyllocactin derivatives (1.04 mg/100 g f.w.). Meanwhile, fruit peel was the richer tissue in total phenolic acids (273.42 mg/100 g f.w.), mainly in piscidic acid content and total flavonoids (7.39 mg/100 g f.w.), isorhamnetin glucoxyl-rhamnosyl-pentoside (IG2) being the most abundant of these compounds. The stability of betalains and phenolic compounds during in vitro gastrointestinal digestion is reported in the present study. In Opuntia stricta var. Dillenii pulp (the edible fraction of the fresh fruit), the betanin bioaccessibility was only 22.9%, and the flavonoid bioaccessibility ranged from 53.7% to 30.6%, depending on the compound. In non-edible samples, such as peel sample (PE), the betanin bioaccessibility was 42.5% and the greater bioaccessibility in flavonoids was observed for quercetin glycoside (QG1) 53.7%, the fruit peel being the most interesting material to obtain antioxidant extracts, attending to its composition on antioxidant compounds and their bioaccessibilities.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 599
Author(s):  
Živilė Tarasevičienė ◽  
Aloyzas Velička ◽  
Aurelija Paulauskienė

Phenolic compounds have a number of benefits to human health and can be used as preventive compounds for the development of some chronic diseases. Mentha plants are not only a good source of essential oils, but also contain significant levels of wide range of phenolic compounds. The aim of this research was to investigate the possibility to increase phenols content in Mentha plants under the foliar application with L-phenylalanine, L-tryptophan, L-tyrosine at two concentrations (100 mg L−1 and 200 mg L−1) and to create preconditions for using this plant for even more diverse purposes. Quantitative and qualitative analyses of phenols in mints were performed by HPLC method. Foliar application of amino acids increased the total phenol content from 1.22 to 3.51 times depending on the treatment and mint variety. The most pronounced foliar application to total phenols content was tryptophane especially in Mentha piperita “Swiss”. Mentha piperita “Swiss” was affected most by foliar application and the amount of total phenolic acids depending on the treatment ranged from 159.25 to 664.03 mg 100 g−1 (DW), respectively, non-sprayed and sprayed with tryptophane 100 mg L−1. Our results suggest that the biophenol content varies according to such factors as foliar application and variety, and every single mint variety has individual response to different applications of amino acids.


2021 ◽  
Vol 67 (1) ◽  
pp. 18-34
Author(s):  
Hasna Bouhenni ◽  
Koula Doukani ◽  
Daniela Hanganu ◽  
Neli-Kinga Olah ◽  
Nazim Şekeroğlu ◽  
...  

Summary Introduction: Natural products represent a gold mine for scientists looking for compounds for the treatment of health problems and diseases with their different biological and pharmacological activities. However, recent research is focused on finding natural sources of antioxidants. Objective: The objective of current research was to determine the phytochemical profile of Algerian fenu-greek (Trigonella foenum-graecum L.), and Syrian cumin (Cuminum cyminum L.) seeds in order to characterize their phenolic compounds and to determine their antioxidant activities. Methods: Total phenolic, flavonoids, condensed and hydrolysable tannins contents were quantified using Folin-Ciocalteu, aluminium chloride, vanillin and ferric chloride methods, respectively. Phenolic compounds were identified by HPLC method and antioxidant activity was measured using DPPH assay. Results: The higher amounts of total phenolic compounds, flavonoids, condensed and hydrolysable tannins were given by fenugreek. Results of HPLC analysis of our plants showed that eight phytochemical compounds were found in cumin extract, and seven molecules in fenugreek extract. Moreover, fenugreek possessed higher antioxidant activity. Conclusion: This study confirmed that our plants are a good source of phenolic contents and possess a high antioxidant activity.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 488
Author(s):  
Agnieszka Szopa ◽  
Michał Dziurka ◽  
Sebastian Granica ◽  
Marta Klimek-Szczykutowicz ◽  
Paweł Kubica ◽  
...  

Schisandra rubriflora is a dioecious, underestimated medicinal plant species known from traditional Chinese medicine. The present study was aimed at characterising the polyphenolic profile composition and the related antioxidant capacity of S. rubriflora fruit, stem and leaf and in vitro microshoot culture extracts. Separate analyses of material from female and male specimens were carried out. This study was specifically aimed at detailed characterisation of the contribution of phenolic compounds to overall antioxidant activity using ultra-high-performance liquid chromatography with a photodiode array detector coupled to electrospray ionization ion trap mass spectrometry (UHPLC-DAD-ESI-MS3) and a high-performance liquid chromatography-diode array detector (HPLC-DAD). Using UHPLC-DAD-ESI-MS3, twenty-seven phenolic compounds from among phenolic acids and flavonoids were identified. Concentrations of three phenolic acids (neochlorogenic, chlorogenic and cryptochlorogenic acids) and eight flavonoids (hyperoside, rutoside, isoquercitrin, guaijaverin, trifolin, quercetin, kaempferol, and isorhamnetin) were determined using HPLC-DAD using reference standards. The highest total phenolic content was confirmed for the stem and leaf extracts collected in spring. The contents of phenolic compounds of in vitro biomasses were comparable to that in the fruit extracts. The methanolic extracts from the studied plant materials were evaluated for their antioxidant properties using various in vitro assays, namely free radicals scavenging estimation using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), ferric-reducing antioxidant power (FRAP) and cupric-reducing antioxidant capacity (CUPRAC) as well as QUick, Easy, New, CHEap, and Reproducible CUPRAC (QUENCHER-CUPRAC) assays. A close relationship between the content of polyphenolic compounds in S. rubriflora and their antioxidant potential has been documented.


Foods ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 7 ◽  
Author(s):  
Jiafei Tang ◽  
Frank R. Dunshea ◽  
Hafiz A. R. Suleria

Hops (Humulus lupulus L.) and juniper berries (Juniperus communis L.) are two important medicinal plants widely used in the food, beverage, and pharmaceutical industries due to their strong antioxidant capacity, which is attributed to the presence of polyphenols. The present study is conducted to comprehensively characterize polyphenols from hops and juniper berries using liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS) to assess their antioxidant capacity. For polyphenol estimation, total phenolic content, flavonoids and tannins were measured, while for antioxidant capacity, three different antioxidant assays including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay, the 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation decolorization assay and the ferric reducing-antioxidant power (FRAP) assay were used. Hops presented the higher phenolic content (23.11 ± 0.03 mg/g dw) which corresponded to its strong antioxidant activity as compared to the juniper berries. Using LC-ESI-QTOF/MS, a total of 148 phenolic compounds were tentatively identified in juniper and hops, among which phenolic acids (including hydroxybenzoic acids, hydroxycinnamic acids and hydroxyphenylpropanoic acids) and flavonoids (mainly anthocyanins, flavones, flavonols, and isoflavonoids) were the main polyphenols, which may contribute to their antioxidant capacity. Furthermore, the HPLC quantitative analysis showed that both samples had a high concentration of phenolic acids and flavonoids. In the HPLC quantification, the predominant phenolic acids in hops and juniper berries were chlorogenic acid (16.48 ± 0.03 mg/g dw) and protocatechuic acid (11.46 ± 0.03 mg/g dw), respectively. The obtained results highlight the importance of hops and juniper berries as a rich source of functional ingredients in different food, beverage, and pharmaceutical industries.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 190
Author(s):  
Ziyun Xu ◽  
Maninder Meenu ◽  
Pengyu Chen ◽  
Baojun Xu

This study aimed to systematically assess the phenolic profiles and antioxidant capacities of 21 chestnut samples collected from six geographical areas of China. All these samples exhibit significant differences (p < 0.05) in total phenolic contents (TPC), total flavonoids content (TFC), condensed tannin content (CTC) and antioxidant capacities assessed by DPPH free radical scavenging capacity (DPPH), ABTS free radical scavenging capacities (ABTS), ferric reducing antioxidant power (FRAP), and 14 free phenolic acids. Chestnuts collected from Fuzhou, Jiangxi (East China) exhibited the maximum values for TPC (2.35 mg GAE/g), CTC (13.52 mg CAE/g), DPPH (16.74 μmol TE/g), ABTS (24.83 μmol TE/g), FRAP assays (3.20 mmol FE/100 g), and total free phenolic acids (314.87 µg/g). Vanillin and gallic acids were found to be the most abundant free phenolic compounds among other 14 phenolic compounds detected by HPLC. Overall, the samples from South China revealed maximum mean values for TPC, CTC, DPPH, and ABTS assays. Among the three chestnut varieties, Banli presented prominent mean values for all the assays. These finding will be beneficial for production of novel functional food and developing high-quality chestnut varieties.


2013 ◽  
Vol 30 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Ilona Dabina-Bicka ◽  
Daina Karklina ◽  
Zanda Kruma ◽  
Fredijs Dimins

Abstract Beer is a complex mixture - over 400 different compounds have been characterized in beer. Significant health and product quality promoting benefits have been attributed to its bioactive secondary metabolites such as phenolics. Polyphenols and phenolic acids present in beer are natural antioxidants. The aim of the research was to characterize the bioactive compounds in Latvian barley beer, such as phenolic acids and flavanols. In an experiment, different lager-type beers produced in Latvia were analysed. The total phenolic content was determined spectrophotometrically according to the Folin-Ciocalteu colorimetric method and expressed as gallic acid equivalents. Individual phenolic compounds were determined using high performance liquid chromatography (HPLC). The antioxidant potential of beer was analyzed by the 2,2-diphenyl-1-picrylhydraziyl (DPPH) radical assays and expressed as micromoles of Trolox equivalents. The research showed that the total phenolic content of dark beer samples (320.8-863.6 mg GE L-1) was mostly higher than that of the light beers (300.9-475.2 mg GE L-1). In total, eleven phenols were determined in the analysed samples. Also the sum of individual phenolics in dark beer samples was higher than in the light beer brands. All beer samples exhibited a strong DPPH radical scavenging activity: from 441.3 to 1064.2 μmol TE L-1 for the light beer samples, and from 726.2 to 1748.7 μmol TE L-1 for the dark beer. The research suggests that composition of beer phenolic compounds was not dependent on the type of beer - light or dark.


Genetika ◽  
2013 ◽  
Vol 45 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Sladjana Zilic ◽  
Vesna Hadzi-Taskovic-Sukalovic ◽  
Dejan Dodig ◽  
Vuk Maksimovic ◽  
Vesna Kandic

The objective of this study was to determine phenolic compounds and the total antioxidant capacity in the grain of ten bread (T. aestivum L.) and ten durum (T. durum Desf.) wheat genotypes. Soluble free forms of total phenolics, flavonoids, PVPP (polyvinylpolypyrrolidone) bound phenolics, proanthocyanidins and phenolic acids were investigated. In addition, the correlation coefficients between total antioxidant capacities and the concentration of different soluble free phenolic compounds, as well as between soluble free total phenolics and phenolic acids, flavonoids and PVPP bound phenolics were determined. Significant differences in the content of aceton/water extractable total phenolics, PVPP bound phenolics and phenolic acids between and within two wheat species were found. On the average, durum wheat samples had about 1.19-fold higher total phenolic compounds and about 1.5-fold higher PVPP bound phenolics than bread wheat samples. Three phenolic acids, ferulic, caffeic and chlorogenic, were detected in wholemeal bread wheat. Caffeic acid was not found in durum wheat samples whilst ferulic acid was the most abundant. Proanthocyanidins in bread and durum wheat genotypes were not detected. The antioxidant capacity measured as the DPPH radical scavenging activity was similar in wholemeal of bread and durum wheat, however, significant differences were observed among genotypes within species.


Sign in / Sign up

Export Citation Format

Share Document