scholarly journals In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1598
Author(s):  
Fernando Bento Cunha ◽  
Karina Torres Pomini ◽  
Ana Maria de Guzzi Plepis ◽  
Virgínia da Conceição Amaro Martins ◽  
Eduardo Gomes Machado ◽  
...  

Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).

2008 ◽  
Vol 396-398 ◽  
pp. 285-288
Author(s):  
Neusa Motta de Freitas Costa ◽  
Bruno Raposo Melo ◽  
Rosana Tavares Brito ◽  
G.V.O. Fernandes ◽  
Vagner Gonçalves Bernardo ◽  
...  

The aim of this paper was to evaluate the usefulness of coupling digital image analysis with immunohistochemistry and histomorphometry data to the study of tissue response to hydroxyapatite in a model of critical size bone defect in calvaria of rats. A transosseous defect measuring 8 mm in diameter was performed with a surgical trephine in the parietal bone of 40 rats and divided into two experimental groups according to the treatment: group I (blood clot, control), group II (HA) and killed 1, 3, 6 and 9 months after implantation (n=5/group/period). The skullcaps with overlaying skin were collected and processed for paraffin embedding. The specimens were cut in the laterolateral direction into 5-µm thick semi-serial sections and stained with hematoxylin-eosin for identification and counting of polymorphonuclears cells, mastocytes, and multinucleated giant cells, MNG, or immunolabeled with anti- lysozyme, -factor VIII and –PCNA. Digital images were obtained and analyzed with the ImagePro-Plus® software for cell couting (polymorphonuclears cells, mastocytes, macrophages and MNG) and microvessel density. Image segmentation of anti-PCNA immunostaining was used for cell proliferation analysis. The digital images obtained allowed clear identification of cells of interest by through morphological aspects or immunostaining. Data recording and analysis was facilitated by the use of specific software for image processing and graphical and statistical analysis. It can be concluded that the techniques applied were usefull to identify and count cells, structures and process of interest making easier the effectiveness of hydroxyapatite in the critical size defect in rat calvaria model.


2017 ◽  
Vol 16 ◽  
pp. 1-11
Author(s):  
Luiz Gustavo Klug ◽  
Carmen Lucia Mueller Storer ◽  
Aline Monise Sebastiani ◽  
Bruna Lorena Bsrbaresco ◽  
Alan Fernando Giovanini ◽  
...  

The proteins Wnts are considered a key regulator of the early development of the skeleton. Aim: The aim of this study was to evaluate the presence of the protein Wnt10b as a marker of bone repair in critical size defects surgically created in the calvaria of rabbits treated with fragmented autogenous adipose tissue graft. Methods: A total of 28 rabbits were divided into two groups: the Control group (C) and Adipose Tissue Graft group (ATG). A CSD measuring 15 mm in diameter was created in the calvaria of each animal. In rabbits of the C group, the defect was filled only with blood clot, and in ATG group, the defect was filled with fragmented adipose tissue graft. The two groups were divided into two subgroups (n = 7) for euthanasia 15 and 40 days after surgery. Histological and immunohistochemically analyses were performed to evaluate the neoformed bone and the presence/concentration of Wnt10b protein. The Kruskal-Wallis test was performed to compare the means and standard deviations of the number of Wnt10b + cells/mm2 in both groups in each postoperative period. It was assumed a significance level of 5%. Results: After 40 days, the mean concentration of the protein Wnt10b in ATG group was 26.26 (+-6.97) significant higher (p<0,001) than the mean in C group that was 305 (37.41). Conclusion: The protein Wnt10b would play a crucial role in the signaling of bone formation in bone defects treated with fragmented autogenous adipose tissue graft.


2008 ◽  
Vol 396-398 ◽  
pp. 249-252 ◽  
Author(s):  
I.I.C. Silva ◽  
S. Pimentel-Soares ◽  
Rafael C. Bittencourt ◽  
José Mauro Granjeiro

The aim of this study was verify the biological efficacy of the use of a xenograft for bone loss therapy. Blood clot, particulate autogenous bone or anorganic bovine xenograft filled critical size defects (CSD) in rat calvaria (8mm diameter). After 0, 7, 30 and 90 days the animals were killed and macroscopic, radiographic and histopathological analysis were conducted. Although no treatment promoted the total closure of bone defect, autogenous bone group had better bone repair after 90 days, followed by xenograft group that exhibited direct bone neoformation onto, and around, the particles confirming its osteoconductivity. In conclusion, the xenograft tested in vivo showed biocompatibility, biodegradability and osteoconductive properties in rat calvaria CSD.


2021 ◽  
Vol 10 (7) ◽  
pp. e55110716800
Author(s):  
Mauricio Mitsuo Monção ◽  
Raísa Cavalcante Dourado ◽  
Luísa Queiroz Vasconcelos ◽  
Isabela Cerqueira Barreto ◽  
Roberto Paulo Correia de Araújo

This study analyzes the clinical, macroscopic and radiographic characteristics of a biomaterial with different proportions of wolastonite (W) and tricalcium phosphate (TCP) on bone tissue regeneration during the implantation process of an experimental model of critical bone defects. Fifteen Wistar rats were used, randomly distributed in 5 groups (n = 3), with a bone defect created on an 8.0 mm diameter calvaria. 4 groups received implants with different proportions of W%/TCP%, referred to as W20/TCP80, W40/TCP60, W60/TCP40 and W80/TCP20. The fifth control group (GC) was filled with blood clot only. Clinical evaluation was performed every 24 hours, and after 7 days, the animals were euthanized. The calvaria were dissected and analyzed macroscopically and by radiography. All study groups showed a satisfactory clinical evolution. The macroscopic analysis showed filling of the bone defect with granules surrounded by newly formed tissue, and the radiographic analysis showed different patterns of displacement of the biomaterial. The study concluded that the different proportions of W%/TCP% were well tolerated by the study groups and demonstrated biocompatibility. The enhanced hydrophilic behavior of the W40/TCP60, W60/TCP40 and W80/TCP20 groups favored the application in the experimental model in vivo.


2015 ◽  
Vol 67 (2) ◽  
pp. 325-333
Author(s):  
R.B. Eleotério ◽  
K.C.S. Pontes ◽  
J.P. Machado ◽  
E.C.C. Reis ◽  
P.S. Ferreira ◽  
...  

Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24), compared with animals that did not receive the product (control group, CG, n=24). Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.


2011 ◽  
Vol 22 (4) ◽  
pp. 322-328 ◽  
Author(s):  
Anderson de Oliveira Paulo ◽  
Igor Iuco Castro-Silva ◽  
Davi Ferreira de Oliveira ◽  
Manoel Eduardo de Lima Machado ◽  
Idomeo Bonetti-Filho ◽  
...  

The aim of this study was to evaluate the bone repair using autogenous periosteum-derived cells (PDC) and bovine anorganic apatite and collagen (HA-COL). PDC from Wistar rats (n=10) were seeded on HA-COL discs and subjected to osteoinduction during 6 days. Critical-size defects in rat calvarias were treated with blood clot (G1), autogenous bone (G2), HA-COL (G3) and HA-COL combined with PDC (G4) (n=40), and then analyzed 1 and 3 months after surgeries. Radiographic analysis exhibited no significant temporal change. G1 and G2 had discrete new marginal bone, but the radiopacity of graft materials in G2, G3 and G4 impaired the detection of osteogenesis. At 3 months, histopathological analysis showed the presence of ossification islets in G1, which was more evident in G2, homogeneous new bone around HA-COL in G3 and heterogeneous new bone around HA-COL in G4 in addition to moderate presence of foreign body cells in G3 and G4. Histomorphometric analysis showed no change in the volume density of xenograft (p>0.05) and bone volume density in G2 was twice greater than in G1 and G4 after 3 months (p<0.05), but similar to G3. The PDC did not increase bone formation in vivo, although the biomaterial alone showed biocompatibility and osteoconduction capacity.


2021 ◽  
Vol 12 ◽  
pp. 204173142110042
Author(s):  
Rao Fu ◽  
Chuanqi Liu ◽  
Yuxin Yan ◽  
Qingfeng Li ◽  
Ru-Lin Huang

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


2021 ◽  
Vol 11 (16) ◽  
pp. 7571
Author(s):  
Yoon-Young Sung ◽  
Jae-Woo Shin ◽  
Won-Kyung Yang ◽  
Min-Jin Kim ◽  
Ja-Ik Koo ◽  
...  

Currently, many children undergo precocious puberty, resulting in short stature due to premature closure of the growth plate. Pulsed electromagnetic field (PEMF) stimulation induces cell proliferation of articular chondrocytes. We developed a method for growth promotion using equipment with PEMF. In this study, we aimed to evaluate the effects of PEMF on the growth rate of growth plates using an animal model. An experimental study was conducted on 16 3-week-old rats to validate the effects of the growth care device on growth and development by PEMF stimulation at 28 Hz and 20 Gauss. The tibia bones of the groups with and without PEMF administration were dissected after 10 days, and then, the length of the growth plate of the knee and levels of insulin-like growth factor (IGF)-1 hormone in serum were measured. The length of the growth plate on the tibia bone and the levels of circulating IGF-1 were significantly increased by 25.6% and 13.6%, respectively, in the experimental group to which PEMF was applied compared to those of the control group, without any side effects. These results suggest that PEMF can safely stimulate growth of the growth plate in a non-invasive manner to promote bone growth.


2012 ◽  
Vol 23 (4) ◽  
pp. 315-321 ◽  
Author(s):  
Willian F. Zambuzzi ◽  
Gustavo V. O. Fernandes ◽  
Flávia G. Iano ◽  
Mileni da S. Fernandes ◽  
José Mauro Granjeiro ◽  
...  

It is known that current trends on bone bioengineering seek ideal scaffolds and explore innovative methods to restore tissue function. In this way, the objective of this study was to evaluate the behavior of anorganic bovine bone as osteoblast carrier in critical-size calvarial defects. MC3T3-E1 osteoblast cells (1x10(5) cells/well) were cultured on granules of anorganic bovine bone in 24-well plates and after 24 h these granules were implanted into rat critical-size calvarial defects (group Biomaterial + Cells). In addition, other groups were established with different fillings of the defect: Blood Clot (negative control); Autogenous Bone (positive control); Biomaterial (only granules) and Cells (only MC3T3-E1 cells). After 30 days, the animals were euthanized and the calvaria were technically processed in order to allow histological and morphometric analysis. It was possible to detect blood vessels, connective tissue and newly formed bone in all groups. Particularly in the Biomaterial + Cells group, it was possible to observe a profile of biological events between the positive control group (autogenous bone) and the group in which only anorganic bovine granules were implanted. Altogether, the results of the present study showed that granules of anorganic bovine bone can be used as carrier to osteoblasts and that adding growth factors at the moment of implantation should maximize these results.


Sign in / Sign up

Export Citation Format

Share Document