scholarly journals Influences of Sr2+ Doping on Microstructure, Giant Dielectric Behavior, and Non-Ohmic Properties of CaCu3Ti4O12/CaTiO3 Ceramic Composites

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1994
Author(s):  
Jutapol Jumpatam ◽  
Bundit Putasaeng ◽  
Narong Chanlek ◽  
Prasit Thongbai

The microstructure, dielectric response, and nonlinear current-voltage properties of Sr2+-doped CaCu3Ti4O12/CaTiO3 (CCTO/CTO) ceramic composites, which were prepared by a solid-state reaction method using a single step from the starting nominal composition of CCTO/CTO/xSrO, were investigated. The CCTO and CTO phases were detected in the X-ray diffraction patterns. The lattice parameter increased with increasing Sr2+ doping concentration. The phase compositions of CCTO and CTO were confirmed by energy-dispersive X-ray spectroscopy with elemental mapping in the sintered ceramics. It can be confirmed that most of the Sr2+ ions substituted into the CTO phase, while some minor portion substituted into the CCTO phase. Furthermore, small segregation of Cu-rich was observed along the grain boundaries. The dielectric permittivity of the CCTO/CTO composite slightly decreased by doping with Sr2+, while the loss tangent was greatly reduced. Furthermore, the dielectric properties in a high-temperature range of the Sr2+-doped CCTO/CTO ceramic composites can be improved. Interestingly, the nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were significantly enhanced. The improved dielectric and nonlinear electrical properties of the Sr2+-doped CCTO/CTO ceramic composites were explained by the enhancement of the electrical properties of the internal interfaces.

1990 ◽  
Vol 04 (12) ◽  
pp. 823-830 ◽  
Author(s):  
S. HIGO ◽  
Y. HAKURAKU ◽  
T. OGUSHI ◽  
I. KAWANO ◽  
Y. ISHIKAWA

Samples of the YBaCuNbO system with different molecular ratios of YBa 2 NbO y to YBa 2 Cu 3 O 7−d, were prepared in air by the solid-state reaction method. The X-ray powder diffraction patterns showed that the sample was composed of two phases, one corresponding to the YBa 2 Cu 3 O 7−d phase and the other to the YBa 2 NbO y phase with a cubic lattice parameter of 8.425 Å to 8.436 Å depending on the Nb content. The superconducting zero resistivity temperature, T c 0, of the YBaCuNbO system increased with the increase of the molecular ratios, from 91.2 K up to a maximum temperature of 92.8 K, and then, by a further increase in the molecular ratio, the T c 0 was drastically reduced with a gradient of −1.94 K /%x.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750318 ◽  
Author(s):  
D. Venkatesh ◽  
K. V. Ramesh

Polycrystalline Cu substituted Ni–Zn ferrites with chemical composition Ni[Formula: see text]Zn[Formula: see text]-Cu[Formula: see text]Fe2O4 (x = 0.00 to 0.25 in steps of 0.05) have been prepared by citrate gel autocombustion method. The samples for electrical properties have been sintered at 900[Formula: see text]C for 4 h. The X-ray diffraction patterns of all samples indicate the formation of single phase spinel cubic structure. The value of lattice parameter is decreases with increasing Cu concentration. The estimated cation distribution can be derived from X-ray diffraction intensity calculations and IR spectra. The tetrahedral and octahedral bond lengths, bond angles, cation–cation and cation–anion distances were calculated by using experimental lattice parameter and oxygen positional parameters. It is observed that Cu ions are distributed in octahedral site and subsequently Ni and Fe ions in tetrahedral site. The grain size of all samples has been calculated by Scanning Electron Microscopy (SEM) images. The variations in DC electrical resistivity and dielectric constant have been explained on the basis of proposed cation distribution.


2021 ◽  
pp. 490-495
Author(s):  
Mohammed J. Tuama ◽  
Lamia K. Abbas

The conventional solid-state reaction method was utilized to prepare a series of superconducting samples of the nominal composition Bi2-xPb0.3WxSr2Ca2Cu3O10+d with 0≤x≤0.5 of 50 nm particle size of tungsten sintered at 8500C for 140h in air . The influence of substitution with W NPs at bismuth (Bi) sites was characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and dc electrical resistivity. Room temperature X-ray diffraction analysis revealed that there exists two phases, i.e. Bi-(2223) and Bi-(2212), in addition to the impurity phases of (SrCa) 2Cu2O3, Sr2Ca2Cu7Oδ, Ca2PbO4, CaO, and WO. It was found that the crystallographic structure of all samples was orthorhombic. Lattice parameter values and the volume fraction of the (2223)-phase of the prepared samples were also calculated. The superconductivity transition temperature (Tc) for samples subjected to substitution with W NPs was found to be higher than that for the pure sample. The optimal value of W NPs content in (Bi, Pb)-2223 system was found to be at x=0.3. 


2012 ◽  
Vol 27 (4) ◽  
pp. 256-262 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
H. Wu ◽  
M. Suchomel

M2(dhtp)·nH2O (M = Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate), known as MOF74, is a family of excellent sorbent materials for CO2 that contains coordinatively unsaturated metal sites and a honeycomb-like structure featuring a broad one-dimensional channel. This paper describes the structural feature and provides reference X-ray powder diffraction patterns of these four isostructural compounds. The structures were determined using synchrotron diffraction data obtained at beam line 11-BM at the Advanced Photon Source (APS) in the Argonne National Laboratory. The samples were confirmed to be hexagonal R 3 (No. 148). From M = Mn, Co, Ni, to Zn, the lattice parameter a of MOF74 ranges from 26.131 73(4) Å to 26.5738(2) Å, c from 6.651 97(5) to 6.808 83(8) Å, and V ranges from 3948.08 Å3 to 4163.99 Å3, respectively. The four reference X-ray powder diffraction patterns have been submitted for inclusion in the Powder Diffraction File (PDF).


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2488
Author(s):  
Dariusz Bochenek ◽  
Przemysław Niemiec ◽  
Artur Chrobak

In this paper, ferroelectric–ferrimagnetic ceramic composites based on multicomponent PZT-type (PbZr1-xTixO3-type) material and ferrite material with different percentages in composite compositions were obtained and studied. The ferroelectric component of the composite was a perovskite ceramic material with the chemical formula Pb0.97Bi0.02(Zr0.51Ti0.49)0.98(Nb2/3Mn1/3)0.02O3 (P), whereas the magnetic component was nickel-zinc ferrite with the chemical formula Ni0.5Zn0.5Fe2O4 (F). The process of sintering the composite compounds was carried out by the free sintering method. Six ferroelectric-ferrimagnetic ceramic P-F composite compounds were designed and obtained with different percentages of its components, i.e., 90/10 (P90-F10), 85/15 (P85-F15), 80/20 (P80-F20), 60/40 (P60-F40), 40/60 (P40-F60), and 20/80 (P20-F80). X-ray diffraction patterns, microstructural, ferroelectric, dielectric, magnetic properties, and DC electrical conductivity of the composite materials were investigated. In this study, two techniques were used to image the microstructure of P-F composite samples: SB (detection of the signals from the secondary and backscattered electron detectors) and BSE (detection of backscattered electrons), which allowed accurate visualization of the presence and distribution of the magnetic and ferroelectric component in the volume of the composite samples. The studies have shown that at room temperature, the ceramic composite samples exhibit good magnetic and electrical properties. The best set of physical properties and performance of composite compositions have ceramic samples with a dominant phase of ferroelectric component and a small amount of the ferrite component (P90-F10). Such a composition retains the high ferroelectric properties of the ferroelectric component in the composite while also acquiring magnetic properties. These properties can be prospectively used in new types of memory and electromagnetic converters.


2015 ◽  
Vol 68 (8) ◽  
pp. 1293 ◽  
Author(s):  
Pakvipar Chaopanich ◽  
Punnama Siriphannon

Hydroxyapatite (HAp) nanoparticles were successfully synthesized from an aqueous mixture of Ca(NO3)2·4H2O and (NH4)2HPO4 by a facile single-step refluxing method using polystyrene sulfonate (PSS) as a template. The effects of reaction times, pH, and PSS concentration on the HAp formation were investigated. It was found that the crystalline HAp was obtained under all conditions after refluxing the precursors for 3 and 6 h. The longer refluxing time, the greater the crystallinity and the larger the crystallite size of the HAp nanoparticles. The HAp with poor crystallinity was obtained at pH 8.5; however, the well-crystallized HAp was obtained when reaction pH was increased to 9.5 and 10.5. In addition, the X-ray diffraction patterns revealed that the presence of PSS template caused the reduction of HAp crystallite size along the (002) plane from 52.6 nm of non-template HAp to 43.4 nm and 41.4 nm of HAp with 0.05 and 0.2 wt-% PSS template, respectively. Transmission electron microscopy images of the synthesized HAp revealed the rod-shaped crystals of all samples. The synthesized HAp nanoparticles were modified by l-aspartic acid (Asp) and l-arginine (Arg), having negative and positive charges, respectively. It was found that the zeta potential of HAp was significantly changed from +5.46 to –24.70 mV after modification with Asp, whereas it was +4.72 mV in the Arg-modified HAp. These results suggested that the negatively charged amino acid was preferentially adsorbed onto the synthesized HAp surface.


2021 ◽  
Vol 11 (4) ◽  
pp. 12215-12226

Undoped, Cerium (Ce) doped, Manganese (Mn) doped and Ce-Mn co-doped Barium Titanate (BaTiO3) with the general formula Ba1-xCexMnyTi1-yO3 (where x = 0.00, 0.01, 0.02, 0.03, y = 0.00; x = 0.00, y =0.01, 0.02, 0.03; and x = y = 0.01, 0.02,0.03) were synthesized by solid-state reaction method and sintered at 1200 C for 4 hr with an aim to study their structural and electrical properties. The grain size of the samples has been estimated using the Scanning Electron Microscopy (SEM). The X-ray Diffraction (XRD) analysis indicates that the structure of the Ce-doped and Ce-Mn co-doped BaTiO3 is cubic. However, the undoped BaTiO3 and Mn-doped BaTiO3 confirmed the tetragonal-cubic mixed phases. With the change of doping concentrations, the positions of different peaks shifted slightly. The lattice parameter varied irregularly with increasing doping concentration because of Mn's changeable valency. EDX spectra confirmed the presence of Ba, Ti, Ce, and Mn contents in the co-doped samples with stoichiometric ratio. Crystallinity is observed to be clearly increased when Ce-Mn is co-doped in BaTiO3. J-V characteristic curves indicate transition from conducting to semiconducting nature for the doped and co-doped samples with the increase in temperature. The dielectric constant of the samples increases up to 4500 with the doping concentration. The higher values of dielectric constant are observed for the 2% Mn-doped and 1% Ce-Mn co-doped samples compared to the other undoped samples. For the undoped and Mn-doped samples, constant dielectric values increase with temperature but decrease for the Ce-doped and Ce-Mn co-doped samples. It is inferred that co-doping of BaTiO3 with Ce and Mn would be beneficial and economical for its applications.


2014 ◽  
Vol 38 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Sheikh Mohi Uddin Rumy ◽  
Mahabub Alam Bhuiyan ◽  
MH Mesbah Ahmed ◽  
Kazi Hanium Maria ◽  
MA Hakim ◽  
...  

The effects of Li2O additives on the structural, magnetic and electrical properties of Ni0.5Mg0.5Fe2O4, prepared by conventional double sintering ceramic technique were investigated. The X-raydiffraction (XRD) pattern of the prepared samples showed single phase cubic spinel structure.Variation of lattice parameter has been observed with the variation of Li2O content. Theenhancement of bulk density has been observed for 2 mol% Li2O additive, but further increase inLi2O concentration, these values decrease. Enhancement of initial permeability (??) have beenobserved for the sample with 2 mol% Li2O additives while it decreases for higher concentration ofLi2O. The Curie temperature is found to decrease with the increase in Li2O additive. The resistivityincreases with increasing additive content and showed a significant dispersion with frequency,which is the normal ferromagnetic behavior. The dielectric constant (??) measurement showed thenormal dielectric behavior of spinel ferrite. Possible explanation for the observed features arediscussed. DOI: http://dx.doi.org/10.3329/jbas.v38i1.20198 Journal of Bangladesh Academy of Sciences, Vol. 38, No. 1, 7-18, 2014


2019 ◽  
Vol 34 (3) ◽  
pp. 242-250 ◽  
Author(s):  
J. Anike ◽  
R. Derbeshi ◽  
W. Wong-Ng ◽  
W. Liu ◽  
D. Windover ◽  
...  

Structural characterization and X-ray reference powder pattern determination have been conducted for the Co- and Zn-containing tridymite derivatives Ba(Co1−xZnx)SiO4 (x = 0.2, 0.4, 0.6, 0.8). The bright blue series of Ba(Co1−xZnx)SiO4 crystallized in the hexagonal P63 space group (No. 173), with Z = 6. While the lattice parameter “a” decreases from 9.126 (2) Å to 9.10374(6) Å from x = 0.2 to 0.8, the lattice parameter “c” increases from 8.69477(12) Å to 8.72200(10) Å, respectively. Apparently, despite the similarity of ionic sizes of Zn2+ and Co2+, these opposing trends are due to the framework tetrahedral tilting of (ZnCo)O4. The lattice volume, V, remains comparable between 626.27 Å3 and 626.017 (7) Å3 from x = 0 to x = 0.8. UV-visible absorption spectrum measurements indicate the band gap of these two materials to be ≈3.3 and ≈3.5 eV, respectively, therefore potential UV photocatalytic materials. Reference powder X-ray diffraction patterns of these compounds have been submitted to be included in the Powder Diffraction File (PDF).


2014 ◽  
Vol 979 ◽  
pp. 302-306 ◽  
Author(s):  
Chalermpol Rudradawong ◽  
Aree Wichainchai ◽  
Aparporn Sakulkalavek ◽  
Yuttana Hongaromkid ◽  
Chesta Ruttanapun

In this paper, the CuFeO2compound were prepared by classical solid state reaction (CSSR) and direct powder dissolved solution (DPDS) method from starting material metal oxides and metal powders. Preparation of two methods shows that, direct powder dissolved solution faster recover phases than classical solid state reaction method. The fastest method gets from starting materials Cu and Fe metal powders, the electrical conductivity, Seebeck coefficient, carrier concentration and mobility are 10.68 S/cm, 244.59 μV/K, 12.86×1016cm-3and 494.96 cm2/V.s, respectively. In addition, each CuFeO2compounds were investigated on crystal structure and electrical properties. From XRD and SEM results, all samples have a crystal structure delafossite-typeand a large grain boundary more than 15 μm by electrical conductivity corresponds to grain boundary and lattice parameter: a increases. Within this paper, from above results exhibit that preparation CuFeO2from Cu and Fe by direct powder dissolved solution method most appropriate for thermoelectric oxide materials due to high active for preparation else high lattice strain and high power factor are 0.00052 and 0.64×10-4W/mK2, respectively.


Sign in / Sign up

Export Citation Format

Share Document