scholarly journals Application of Capillary Electrophoresis to the Analysis of Bioactive Compounds in Herbal Raw Materials

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2135
Author(s):  
Anna Przybylska ◽  
Marcin Gackowski ◽  
Marcin Koba

The article is a summary of scientific reports from the last 16 years (2005–2021) on the use of capillary electrophoresis to analyze polyphenolic compounds, coumarins, amino acids, and alkaloids in teas or different parts of plants used to prepare aqueous infusions, commonly known as “tea” or decoctions. This literature review is based on PRISMA guidelines and articles selected in base of criteria carried out using PICOS (Population, Intervention, Comparison, Outcome, Study type). The analysis showed that over 60% of articles included in this manuscript comes from China. The literature review shows that for the selective electrophoretic separation of polyphenolic and flavonoid compounds, the most frequently used capillary electromigration technique is capillary electrophoresis with ultraviolet detection. Nevertheless, the use of capillary electrophoresis-mass spectrometry allows for the sensitive determination of analytes with a lower limit of detection and gives hope for routine use in the analysis of functional foods. Moreover, using the modifications in electrochemical techniques allows methods sensitivity reduction along with the reduction of analysis time.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mohadese Biabani ◽  
Azizollah Nezhadali ◽  
Ahmad Nakhaei ◽  
Hossein Nakhaei

In this study, a sensitive and selective sensor is constructed to measure the melamine (MEL) using molecular imprinting polymer (MIP) technique. Chemical and electrochemical techniques are used to construct the MIP and quantitative measurements. The constructed sensor was modified with GO-Fe3O4@SiO2 nanocomposite. Screening and optimization of factors are done using statistical methods, including Plackett–Burman design (PBD) and central composite design (CCD). Under the optimized conditions, an MIP sensor showed a linear range from 5.0 × 10−7 to 1.0 × 10−5 M MEL concentration with a correlation coefficient (R2) of 0.9997. The limit of detection was obtained (0.028 µM) with a highly reproducible response (RSD 2.15%, n = 4). The electrochemical sensor showed good results for the determination of MEL in food samples.


2014 ◽  
Vol 68 (11) ◽  
Author(s):  
Pavel Mikuška ◽  
Lukáš Bružeňák ◽  
Zbyněk Večeřa

AbstractA method for the rapid and sensitive determination of peroxyacetyl nitrate (PAN) in air based on a chemiluminescence reaction with an alkaline solution of luminol in the chemiluminescence aerosol detector is described. The PAN is chromatographically separated from nitrogen dioxide and ozone in a packed column filled with 5 % OV-1 on Chromosorb 30/60 and the eluted PAN is detected via the direct reaction with the luminol solution consisting of 0.002 mol L−1 luminol, 1 vol. % Brij-35 and 0.1 mol L−1 KOH. The limit of detection is 14.9 ng m−3 (3 ppt) of PAN. Alternatively, the PAN after separation is thermally converted to NO2 which is detected by the chemiluminescence reaction with a solution consisting of 0.002 mol L−1 luminol, 0.5 mol L−1 KOH, 0.2 mol L−1 Na2SO3, 0.1 mol L−1 KI, 0.05 mol L−1 EDTA and 0.5 vol. % triton X-100. The alternative approach affords the simultaneous determination of PAN and NO2. The limit of detection is 50 ppt of PAN and 50 ppt of NO2. The time resolution is 3 min. The method was applied to the measurement of ambient peroxyacetyl nitrate in air.


2011 ◽  
Vol 361-363 ◽  
pp. 1486-1489
Author(s):  
Qian Xiang ◽  
Ying Gao

A fast method for the separation and determination of the food additive propyl gallate has been established by using capillary electrophoresis. The effects of several factors such as the applied potential and detection running buffer were investigated in order to obtain the optimum conditions, and the assay results were satisfactory. The limit of detection for the analyte was 10-6 mol/L. This approach has remarkable advantages with respect to other methodologies involving separations and electrochemical detection including minimal sample consumption, higher analysis speed and lower cost. In order to demonstrate the capabilitiy of the method, the determination of additive in a commercial food sample is also presented.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S369-S371
Author(s):  
K. Tomková ◽  
F. Štumr ◽  
P. Dvorská ◽  
P. Šafářová ◽  
J. Rysová ◽  
...  

Within the framework of the research project ELISA methods for the quantitative determination of allergenic substances in foodstuff and raw materials were developed. ELISA kits for allergenic proteins of milk (casein, beta-lactoglobulin and BSA) egg white proteins and mustard proteins were validated and collaborative studies were performed to prove the validation of the ELISA methods developed. Various methods of extraction were tested. The parameters as a limit of detection, as a limit of quantification, robustness, repeatability and accuracy were determined. A broad range of zero matrices for allergens were tested as well. The ELISA kits are suitable for the determination of allergens according to EU legislation Directive 2005/26/EC and Directive 2006/142/EC in the laboratories focused on this topic.


2020 ◽  
Vol 187 (5) ◽  
Author(s):  
Jagriti Sethi ◽  
Michiel Van Bulck ◽  
Ahmed Suhail ◽  
Mina Safarzadeh ◽  
Ana Perez-Castillo ◽  
...  

AbstractA label-free biosensor is developed for the determination of plasma-based Aβ1–42 biomarker in Alzheimer’s disease (AD). The platform is based on highly conductive dual-layer of graphene and electrochemically reduced graphene oxide (rGO). The modification of dual-layer with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) is achieved to facilitate immobilization of H31L21 antibody. The effect of these modifications were studied with morphological, spectral and electrochemical techniques. The response of the biosensor was evaluated using differential pulse voltammetry (DPV). The data was acquired at a working potential of ~ 180 mV and a scan rate of 50 mV s−1. A low limit of detection (LOD) of 2.398 pM is achieved over a wide linear range from 11 pM to 55 nM. The biosensor exhibits excellent specificity over Aβ1–40 and ApoE ε4 interfering species. Thus, it provides a viable tool for electrochemical determination of Aβ1–42. Spiked human and mice plasmas were used for the successful validation of the sensing platform in bio-fluidic samples. The results obtained from mice plasma analysis concurred with the immunohistochemistry (IHC) and magnetic resonance imaging (MRI) data obtained from brain analysis.


2020 ◽  
Vol 18 (4) ◽  
pp. 253-258
Author(s):  
Gamze Erdoğdu

A sensitive and simple modified sensor was prepared by electrodeposition of diphenylamine sulfonic acid (DPSA) to the glassy carbon electrode surface by cyclic voltammetry (CV) technique. The electrooxidation of epinephrine (EP) was accomplished by CV and differential pulse voltammetry at poly(DPSA) modified sensor. As a result of the findings, the current values were enhanced and both substances were separated at the modified sensor compared to the bare electrode. There was linearly between the oxidation current and concentration of EP from 0.2 to 100 μM in phosphate buffer solution at pH 7.0. The limit of detection was 5.0 nM and the sensitivity was 0.4205 μA/μM. The determination of EP was successfully and satisfactorily carried out in real samples such as human blood serum and urine at the poly(DPSA) sensor. To the best knowledge of this work, this is the first study that detect the EP in the presence of ascorbic acid at poly(DPSA) sensor in the literature.


Sign in / Sign up

Export Citation Format

Share Document