scholarly journals The Effects of Photosensitizing Dyes Fagopyrin and Hypericin on Planktonic Growth and Multicellular Life in Budding Yeast

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4708
Author(s):  
Oksana Sytar ◽  
Konstantia Kotta ◽  
Dimitrios Valasiadis ◽  
Anatoliy Kosyan ◽  
Marian Brestic ◽  
...  

Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of death in Saccharomyces cerevisiae. Fagopyrin and hypericin induced a biphasic and triphasic dose response in cellular growth, respectively, over a 10-fold concentration change. In fagopyrin-treated cells, disruptions in the normal cell cycle progression were evident by microscopy. DAPI staining revealed several cells that underwent premature mitosis without budding, a striking morphological abnormality. Flow Cytometric (FC) analysis using a concentration of 100 µM showed reduced cell viability by 41% in fagopyrin-treated cells and by 15% in hypericin-treated cells. FC revealed the development of a secondary population of G1 cells in photosensitizer-treated cultures characterized by small size and dense structures. Further, we show that fagopyrin and the closely related hypericin altered the shape and the associated fluorescence of biofilm-like structures. Colonies grown on solid medium containing photosensitizer had restricted growth, while cell-to-cell adherence within the colony was also affected. In conclusion, the photosensitizers under dark conditions affected culture growth, caused toxicity, and disrupted multicellular growth, albeit with different efficiencies.

Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1585-1593 ◽  
Author(s):  
Anna Jetmore ◽  
P. Artur Plett ◽  
Xia Tong ◽  
Frances M. Wolber ◽  
Robert Breese ◽  
...  

Differences in engraftment potential of hematopoietic stem cells (HSCs) in distinct phases of cell cycle may result from the inability of cycling cells to home to the bone marrow (BM) and may be influenced by the rate of entry of BM-homed HSCs into cell cycle. Alternatively, preferential apoptosis of cycling cells may contribute to their low engraftment potential. This study examined homing, cell cycle progression, and survival of human hematopoietic cells transplanted into nonobese diabetic severe combined immunodeficient (NOD/SCID) recipients. At 40 hours after transplantation (AT), only 1% of CD34+ cells, or their G0(G0CD34+) or G1(G1CD34+) subfractions, was detected in the BM of recipient mice, suggesting that homing of engrafting cells to the BM was not specific. BM of NOD/SCID mice receiving grafts containing approximately 50% CD34+ cells harbored similar numbers of CD34+ and CD34− cells, indicating that CD34+ cells did not preferentially traffic to the BM. Although more than 64% of human hematopoietic cells cycled in culture at 40 hours, more than 92% of cells recovered from NOD/SCID marrow were quiescent. Interestingly, more apoptotic human cells were detected at 40 hours AT in the BM of mice that received xenografts of expanded cells in S/G2+M than in recipients of G0/G1 cells (34.6% ± 5.9% and 17.1% ± 6.3%, respectively; P < .01). These results suggest that active proliferation inhibition in the BM of irradiated recipients maintains mitotic quiescence of transplanted HSCs early AT and may trigger apoptosis of cycling cells. These data also illustrate that trafficking of transplanted cells to the BM is not selective, but lodgment of BM-homed cells may be specific.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 360 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Li ◽  
Abdalla ◽  
Chen ◽  
...  

As key post-transcriptional regulators, microRNAs (miRNAs) play an indispensable role in skeletal muscle development. Our previous study suggested that miR-34b-5p and IGFBP2 could have a potential role in skeletal muscle growth. Our goal in this study is to explore the function and regulatory mechanism of miR-34b-5p and IGFBP2 in myogenesis. In this study, the dual-luciferase reporter assay and Western blot analysis showed that IGFBP2 is a direct target of miR-34b-5p. Flow cytometric analysis and EdU assay showed that miR-34b-5p could repress the cell cycle progression of myoblasts, and miR-34b-5p could promote the formation of myotubes by promoting the expression of MyHC. On the contrary, the overexpression of IGFBP2 significantly facilitated the proliferation of myoblasts and hampered the formation of myotubes. Together, our results indicate that miR-34b-5p could mediate the proliferation and differentiation of myoblasts by targeting IGFBP2.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi94-vi94
Author(s):  
Taylor Dismuke ◽  
Chaemin Lim ◽  
Timothy Gershon

Abstract CDK4/6 inhibition is a promising therapy for medulloblastoma, one of the most common malignant pediatric brain tumors. To improve pharmacokinetics, we developed a polyoxazoline nanoparticle-encapsulated formulation of the FDA-approved CDK4/6 inhibitor palbociclib (POx-palbo). We then administered POx-palbo to transgenic medulloblastoma-prone GFAP-Cre/SmoM2 mice, to determine the efficacy and mechanisms of action and resistance. We found that POx-palbo slowed tumor progression, but consistently failed to be curative. Further analysis showed that while CDK4/6 inhibition acutely blocked G1 cells from re-entering the cell cycle, this effect wore off within hours of drug administration. However, flow cytometric analysis of EdU uptake hours after palbociclib demonstrated aberrant S-phase with reduced rate of DNA synthesis. This POx-palbociclib-induced alteration of S-phase progression seems to remain true at later time points even when we observed that palbociclib G1/S inhibition began to decrease. Based on these data, we propose that the combinational therapy of POx-palbociclib and S-phase targeting agents will further improve treatment. Faulty tumor cell cycle progression in the presence of Pox-palbociclib may give increased window to target the S-phase for irreversible cell-cycle exit.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hongyan Chen ◽  
Qing Miao ◽  
Miao Geng ◽  
Jing Liu ◽  
Yazhuo Hu ◽  
...  

Aims. To further investigate the antineuroblastoma effect of rutin which is a type of flavonoid.Methods. The antiproliferation of rutin in human neuroblastoma cells LAN-5 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Chemotaxis of LAN-5 cells was assessed using transwell migration chambers and scratch wound migration assay. The cell cycle arrest and apoptosis in a dose-dependent manner was measured by flow cytometric and fluorescent microscopy analyses. The apoptosis-related proteins BAX and BCL2 as well as MYCN mRNA express were determined by RT-PCR analysis. Secreted TNF-αlevel were determined using specific enzyme-linked immunosorbent assay kits.Results. Rutin significantly inhibited the growth of LAN-5 cells and chemotactic ability. Flow cytometric analysis revealed that rutin induced G2/M arrest in the cell cycle progression and induced cell apoptosis. The RT-PCR showed that rutin could decrease BCL2 expression and BCL2/BAX ratio. In the meantime, the MYCN mRNA level and the secretion of TNF-αwere inhibited.Conclusion. These results suggest that rutin produces obvious antineuroblastoma effects via induced G2/M arrest in the cell cycle progression and induced cell apoptosis as well as regulating the expression of gene related to apoptosis and so on. It supports the viability of developing rutin as a novel therapeutic prodrug for neuroblastoma treatment, as well as providing a new path on anticancer effect of Chinese traditional drug.


2009 ◽  
Vol 69 (22) ◽  
pp. 8563-8571 ◽  
Author(s):  
K. Lefkimmiatis ◽  
M. F. Caratozzolo ◽  
P. Merlo ◽  
A. M. D'Erchia ◽  
B. Navarro ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5485-5485
Author(s):  
Hesham Hassan ◽  
Michelle Varney ◽  
Bhavana J Dave ◽  
Rakesh K Singh

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL).Despite long-term remission achieved with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone), relapse occurs in almost one third of the patients. Therefore, there is a need for novel therapeutic targets that are relevant to DLBCL pathogenesis. TP73 gene is a member of the p53 tumor suppressor gene family, which is critical in the regulation of cell cycle and apoptosis. TP73 is located in distal 1p36 chromosomal region that is commonly disrupted in DLBCL. Our previous studies had shown that the differential expression of p73 isoforms correlates with proliferation and apoptosis in DLBCL patient specimens. Furthermore, the experimental modulation of p73 isoforms using expression vectors or siRNA modulates the behavior and regulate the chemotherapeutic response of DLBCL cell line models. Diclofenac is NSAID that has been shown to increase p73 activity, substitute p53 activity and suppress the growth of neuroblastoma. In the present study, we investigated whether diclofenac modulates DLBCL apoptosis and cell cycle progression independent of p53 status. We used cell line models of the GCB-DLBCL (DHL-16 and OCI-Ly7) and the ABC-DLBCL (OCI-Ly3 and Pfeiffer). Because OCI-Ly7 and Pfeiffer have a mutant p53, these cells can model the activity of diclofenac in the presence of mutant p53. We used MTT assay to study the response of the DLBCL cells to various concentrations of diclofenac (25, 50, 100, 150, 200, 250 µM) and at different time points (24, 48, and 72 hours). To decipher the biological effects of diclofenac treatment on DLBCL cells Hema-3 staining was done to visualize morphologic evidence of cell death; propidium iodide-based flow cytometric analysis for cell cycle progression; BrdU incorporation for proliferation; and Annexin-V-Flous flow cytometric analysis for apoptosis. Molecularly, Caspase-GLO assay was used for evaluation of Caspase-3, 7, 8 activity and qRT-PCR was used to estimate the effect of diclofenac treatment on p73 and the p53 family transcriptional target regulating cell cycle (p21) and apoptosis (PUMA, NOXA, BIM, and CD95). Mann-Whitney (for two groups) or ANOVA (for more than two groups) analyses were used to determine the statistical significance for comparisons between different treatment groups. Diclofenac treatment displayed a concentration and duration-dependent suppressive cell proliferative activity against a panel of DLBCL cells independent of p53 status including experimental therapy-resistant models. Diclofenac treatment resulted in cell cycle arrest mainly at the G2/M phase, decreased proliferation, and caused profound cell death (mainly apoptosis and possibly necroptosis). Molecularly, diclofenac treatment was associated with increased activity of caspases- 3, -7 and -8. Increased p53 pathway activity as suggested by induction of expression of a panel of p53 transcriptional targets including the cell cycle regulatory molecule p21 and the pro-apoptotic molecules, PUMA, NOXA, BIM, and CD95, was detected in diclofenac treated DLBCL cells. More importantly diclofenac treatment was associated with enhanced expression of the pro-apoptotic isoforms of the p53 homologue, TAp73. Together, our data demonstrate that clinically non-toxic doses of diclofenac treatment, induces apoptosis and cell cycle arrest of both GCB and ABC-DLBCL cells independent of p53 status and is associated with increased expression of the p73 homologue TAp73. These data highlight the potential of diclofenac as a novel adjuvant therapy in DLBCL. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 18 (6) ◽  
pp. 3163-3172 ◽  
Author(s):  
Muthupalaniappan Meyyappan ◽  
Howard Wong ◽  
Christopher Hull ◽  
Karl T. Riabowol

ABSTRACT Cyclin D2 is a member of the family of D-type cyclins that is implicated in cell cycle regulation, differentiation, and oncogenic transformation. To better understand the role of this cyclin in the control of cell proliferation, cyclin D2 expression was monitored under various growth conditions in primary human and established murine fibroblasts. In different states of cellular growth arrest initiated by contact inhibition, serum starvation, or cellular senescence, marked increases (5- to 20-fold) were seen in the expression levels of cyclin D2 mRNA and protein. Indirect immunofluorescence studies showed that cyclin D2 protein localized to the nucleus in G0, suggesting a nuclear function for cyclin D2 in quiescent cells. Cyclin D2 was also found to be associated with the cyclin-dependent kinases CDK2 and CDK4 but not CDK6 during growth arrest. Cyclin D2-CDK2 complexes increased in amounts but were inactive as histone H1 kinases in quiescent cells. Transient transfection and needle microinjection of cyclin D2 expression constructs demonstrated that overexpression of cyclin D2 protein efficiently inhibited cell cycle progression and DNA synthesis. These data suggest that in addition to a role in promoting cell cycle progression through phosphorylation of retinoblastoma family proteins in some cell systems, cyclin D2 may contribute to the induction and/or maintenance of a nonproliferative state, possibly through sequestration of the CDK2 catalytic subunit.


2007 ◽  
Vol 27 (6) ◽  
pp. 2240-2252 ◽  
Author(s):  
Peter S. Linsley ◽  
Janell Schelter ◽  
Julja Burchard ◽  
Miho Kibukawa ◽  
Melissa M. Martin ◽  
...  

ABSTRACT microRNAs (miRNAs) are abundant, ∼21-nucleotide, noncoding regulatory RNAs. Each miRNA may regulate hundreds of mRNA targets, but the identities of these targets and the processes they regulate are poorly understood. Here we have explored the use of microarray profiling and functional screening to identify targets and biological processes triggered by the transfection of human cells with miRNAs. We demonstrate that a family of miRNAs sharing sequence identity with miRNA-16 (miR-16) negatively regulates cellular growth and cell cycle progression. miR-16-down-regulated transcripts were enriched with genes whose silencing by small interfering RNAs causes an accumulation of cells in G0/G1. Simultaneous silencing of these genes was more effective at blocking cell cycle progression than disruption of the individual genes. Thus, miR-16 coordinately regulates targets that may act in concert to control cell cycle progression.


Sign in / Sign up

Export Citation Format

Share Document