scholarly journals Analytical Extraction Methods and Sorbents’ Development for Simultaneous Determination of Organophosphorus Pesticides’ Residues in Food and Water Samples: A Review

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5495
Author(s):  
Krishna Veni Veloo ◽  
Nur Amirah Syahirah Ibrahim

Extensive use of organophosphorus pesticides in agriculture leads to adverse effects to the environment and human health. Sample preparation is compulsory to enrich target analytes prior to detection as they often exist at trace levels and this step is critical as it determines the concentration of pollutants present in samples. The selection of a suitable extraction method is of great importance. The analytical performance of the extraction methods is influenced by the selection of sorbents as sorbents play a vital role in the sensitivity and selectivity of an analytical method. To date, numerous sorbent materials have been developed to cater to the needs of selective and sensitive pesticides’ detection. Comprehensive details pertaining to extraction methods, developed sorbents, and analytical performance are provided. This review intended to provide a general overview on different extraction techniques and sorbents that have been developed in the last 10 years for organophosphorus pesticides’ determinations in food and water samples.

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mulayam Singh Gaur ◽  
Rajni Yadav ◽  
Mamta Kushwah ◽  
Anna Nikolaevna Berlina

Purpose This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. Design/methodology/approach Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples. Findings This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples. Originality/value This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.


Author(s):  
Palky Mehta ◽  
H. L. Sharma

In the current scenario of Wireless Sensor Network (WSN), power consumption is the major issue associated with nodes in WSN. LEACH technique plays a vital role of clustering in WSN and reduces the energy usage effectively. But LEACH has its own limitation in order to search cluster head nodes which are randomly distributed over the network. In this paper, ERA-NFL- BA algorithm is being proposed for selects the cluster heads in WSN. This algorithm help in selection of cluster heads can freely transform from global search to local search. At the end, a comparison has been done with earlier researcher using protocol ERA-NFL, which clearly shown that proposed Algorithm is best suited and from comparison results that ERA-NFL-BA has given better performance.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1097
Author(s):  
Laura González-Blanco ◽  
Yolanda Diñeiro ◽  
Andrea Díaz-Luis ◽  
Ana Coto-Montes ◽  
Mamen Oliván ◽  
...  

The objective of this work was to demonstrate how the extraction method affects the reliability of biomarker detection and how this detection depends on the biomarker location within the cell compartment. Different extraction methods were used to study the sarcoplasmic and myofibrillar fractions of the Longissimus thoracis et lumborum muscle of young bulls of the Asturiana de los Valles breed in two quality grades, standard (Control) or dark, firm, and dry (DFD) meat. Protein extractability and the expression of some of the main meat quality biomarkers—oxidative status (lipoperoxidation (LPO) and catalase activity (CAT)), proteome (SDS-PAGE electrophoretic pattern), and cell stress protein (Hsp70)—were analyzed. In the sarcoplasmic fraction, buffers containing Triton X-100 showed significantly higher protein extractability, LPO, and higher intensity of high-molecular-weight protein bands, whereas the TES buffer was more sensitive to distinguishing differences in the protein pattern between the Control and DFD meat. In the myofibrillar fraction, samples extracted with the lysis buffer showed significantly higher protein extractability, whereas samples extracted with the non-denaturing buffer showed higher results for LPO, CAT, and Hsp70, and higher-intensity bands in the electrophoretic pattern. These findings highlight the need for the careful selection of the extraction method used to analyze the different biomarkers considering their cellular location to adapt the extractive process.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Adam Glowacz ◽  
Witold Glowacz

This paper presents a study on vibration-based fault diagnosis techniques of a commutator motor (CM). Proposed techniques used vibration signals and signal processing methods. The authors analysed recognition efficiency for 3 states of the CM: healthy CM, CM with broken tooth on sprocket, CM with broken rotor coil. Feature extraction methods called MSAF-RATIO-50-SFC (method of selection of amplitudes of frequencies ratio 50 second frequency coefficient), MSAF-RATIO-50-SFC-EXPANDED were implemented and used for an analysis. Feature vectors were obtained using MSAF-RATIO-50-SFC, MSAF-RATIO-50-SFC-EXPANDED, and sum of RSoV. Classification methods such as nearest mean (NM) classifier, linear discriminant analysis (LDA), and backpropagation neural network (BNN) were used for the analysis. A total efficiency of recognition was in the range of 79.16%–93.75% (TV). The proposed methods have practical application in industries.


Author(s):  
Eun-Sook Lee ◽  
So-Yang Cha ◽  
Jong-Soon Jung

Abstract DNA extraction methods were evaluated to reduce PCR inhibitors and quantify Helicobacter pylori directly from water samples using real-time PCR. Three nucleic acid extraction methods were evaluated for different types of water samples. While the QIAamp DNA mini kit for tissue was suitable for DNA extraction from treated water, the QIAamp DNA stool mini kit was still efficient in analyzing samples from river water after heavy rain and with high concentration of PCR inhibitors. The FastDNA SPIN Kit for Soil could extract DNA effectively from microbes in river and stream waters without heavy rain. Immunomagnetic separation (IMS) was used prior to DNA extraction and was a useful tool for reducing PCR inhibitors in influent and stream samples. H. pylori in various waters could be quantified directly by real-time PCR while minimizing the effect of PCR inhibitors by an appropriate method through the evaluation of DNA extraction methods considering the characteristics of the matrix water. The findings of the present study suggest that the types or characteristics of water sample by source and precipitation are an important factor in detecting H. pylori and they can be applied when detecting and monitoring of other pathogens in water.


2019 ◽  
Vol 4 (3) ◽  
pp. 170-174
Author(s):  
Rajesh Kumar Vaid ◽  
Taruna Anand ◽  
Priyanka Batra ◽  
Ram Avtar Legha ◽  
Bhupendra Nath Tripathi

DNA isolation is a critical step in microbial community analysis of animal dung. DNA isolation from mule dung is challenging due to microbial diversity, composition and chemical nature of mule dung. Therefore, selection of an appropriate DNA isolation method is important to analyse the complete microbial diversity. In the current study, we evaluated the DNA isolation from mule dung samples (n=11) using QiAmp Mini stool kit as per manufacturer’s procedure with modifications. The results suggest that modifications in proprietary column based method improved the DNA quality and quantity suitable for mule dung microbial community analyses.


Sign in / Sign up

Export Citation Format

Share Document