scholarly journals Optimization of HS-SPME for GC-MS Analysis and Its Application in Characterization of Volatile Compounds in Sweet Potato

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5808
Author(s):  
Rong Zhang ◽  
Chaochen Tang ◽  
Bingzhi Jiang ◽  
Xueying Mo ◽  
Zhangying Wang

Volatile compounds are the main chemical species determining the characteristic aroma of food. A procedure based on headspace solid-phase microextraction (HP-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed to investigate the volatile compounds of sweet potato. The experimental conditions (fiber coating, incubation temperature and time, extraction time) were optimized for the extraction of volatile compounds from sweet potato. The samples incubated at 80 °C for 30 min and extracted at 80 °C by the fiber with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating for 30 min gave the most effective extraction of the analytes. The optimized method was applied to study the volatile profile of four sweet potato cultivars (Anna, Jieshu95-16, Ayamursaki, and Shuangzai) with different aroma. In total, 68 compounds were identified and the dominants were aldehydes, followed by alcohols, ketones, and terpenes. Significant differences were observed among the volatile profile of four cultivars. Furthermore, each cultivar was characterized by different compounds with typical flavor. The results substantiated that the optimized HS-SPME GC-MS method could provide an efficient and convenient approach to study the flavor characteristics of sweet potato. This is the basis for studying the key aroma-active compounds and selecting odor-rich accessions, which will help in the targeted improvement of sweet potato flavor in breeding.

2013 ◽  
Vol 803 ◽  
pp. 108-112
Author(s):  
Yu Wang ◽  
Jiao Zhou ◽  
Xiao Hong Yang

Headspace solid phase microextraction - gas chromatography mass spectrometry (HS-SPME-GC-MS) qualitative analysis of volatile substances in Enshi lobster sauce. Yichang, explore the lobster sauce lobster sauce with the best essential conditions to the total peak area of volatile substances as an indicator to determine the optimal experimental conditions for the HS.SPME:Water bath temperature of 50 degrees Celsius,20 minutes extraction time, desorption time 2 min, SPME CAR / PDMS. The results show that fermented in enshi to detect the party of volatile matter 41, Enshi douchi of volatile compounds in components have eight categories .those are alcohols (6), acid (7), ether (2), Pyrazine (3), aldehydes ketones (4), hydrocarbon (19), pyrazine (3), thiazole (1) . fermented in yichang to detect the party of volatile matter 23,yichang douchi of volatile compounds in components have nine categories .those are alcohols (4), acid (5), ether (1), Pyrazine (1), ester (4), Pyrazine(4), hydrocarbon (4), pyrazine (2), furan(1),thiazole (1) .


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 853 ◽  
Author(s):  
Magdalena Januszek ◽  
Paweł Satora ◽  
Tomasz Tarko

Volatile profile of spirits is the most important factor, because it can contribute to pleasant flavor. The aim of the study was to determine the impact of dessert apple cultivar used for fermentation on the concentration of volatile compounds in apple spirits. SPME-GC-MS (solid-phase microextraction- gas chromatography- mass spectrometry) method enables the detection of 69 substances and GC-FID (gas chromatography - flame ionization detector) 31 compounds. Characteristic volatiles for brandies obtained from Topaz were limonene, myrcene, methyl valerate and 1,1-diethoxy-propane, from Rubin—β-citronellol and isopropyl acetate, Elise—limonene, myrcene benzyl acetate and isopropyl acetate, Szampion—β-citronellol, Idared—1,1-diethoxy-propane and Jonagored—ethyl trans-4-decanoate. Of the ten analyzed apple spirits, those obtained from Topaz, Rubin and Elise cultivars demonstrated the most diverse profile of volatile compounds. Moreover, their oenological parameters that are the most important in the production of alcoholic beverages were the most favorable. On the other hand, the content of sugars was relatively low in Elise must, while it was highest in Topaz must, which later on translated into differences in alcohol content. Brandies obtained from Gloster contained the smallest concentrations of esters and terpenes. Results of the sensory analysis showed that highest rated brandies were obtained from Topaz, Rubin, Elise and Florina.


2020 ◽  
Vol 9 (10) ◽  
pp. e5069108880
Author(s):  
Paulo Herbesson Pereira de Sousa ◽  
Cláudia Inês da Silva ◽  
Breno Magalhães Freitas ◽  
Tigressa Helena Rodrigues Soares ◽  
Isac Gabriel Abrahao Bomfim ◽  
...  

This study tested three types of Solid-Phase Microextraction fibers in developing a method to extract volatile organic compounds present in the diet of immature Centris analis. Samples were placed in glass vials with metal lids and added with 3g NaCl and 8 ml deionized water. Extraction and characterization were carried out using a Headspace – Solid Phase Microextraction (HS-SPME) with Gas Chromatography – Mass Spectrometry, and the three types of fibers were polydimethylsiloxane (PDMS), divinylbenzene/ carboxen/ polydimethylsiloxane (DVB/CAR/PDMS) and carboxen/ polydimethylsiloxane (CAR/PDMS). Each type of fiber was exposed to volatiles for 30 min and analyzed in a chromatograph Agilent GC-MS equipped with a quadrupole detector (MSD 5977A), containing a HP-5MS (30 m x 0.25 mm x 0.25 µm) column and Helium as the carrier gas (1 ml.min-1). The CAR / PDMS fiber favored the extraction of volatile compounds to semi-volatile compounds, followed by DVB / CAR / PDMS, while PDMS presented a lower number of extracted compounds, which can be attributed to its apolar nature. The volatile compounds identified in the diet included alcohols, aldehydes, esters, ketones, and terpenes. The SPME technique has proven effective in the extraction of volatile organic compounds from immature of Centris analis diet, being the CAR/PDMS the most suitable fiber for this.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 516
Author(s):  
Jamal Mohammed ◽  
Catherine E. Belisle ◽  
Shangci Wang ◽  
Rachel A. Itle ◽  
Koushik Adhikari ◽  
...  

Peach production in Georgia, USA, extends from mid-May to mid-August. Multiple cultivars are commercially grown in the U.S., and each cultivar has unique fruit quality characteristics, which could influence consumer perception and acceptability. Among those, peach flavor has been minimally characterized among cultivars. Headspace-solid phase microextraction (HS–SPME) combined with gas chromatography–mass spectrometry (GC–MS) was used to characterize the volatile profile of 42 peach cultivars commercially grown in 2016. The goal of this research was to understand the aroma composition and content of peach cultivars grown in Georgia, USA. Thirty-six volatile compounds were identified. Significant differences (p ≤ 0.0001) were observed for all the flavor volatiles across all cultivars being evaluated. Esters were the major compounds isolated from the 42 peach cultivars, followed by lactones, alcohols, aldehydes, and terpenoids, in that order. Lactones, benzaldehyde, and linalool, which are known to be peach aroma compounds, exhibited the highest mean concentrations among the cultivars with ɣ- and δ-decalactones having a concentration of approximately 180 ng·g−1 and 60 ng·g−1, respectively. Among the cultivars, “Majestic” had the highest mean concentration of ɣ-decalactone, followed by “Southern Pearl” with approximately 503 ng·g−1 and 443 ng·g−1, respectively. “Southern Pearl” and “Fairtime” also exhibited the highest average concentration of δ-decalactone. The results obtained will help provide an understanding of the distribution of the various volatile organic compounds found in Georgia-grown peach cultivars.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingkai Jiao ◽  
Zhiqiang Zheng ◽  
Zhenmin Liu ◽  
Chunping You

Red-Veined Cheese is an experimental internal mold-ripened cheese using red koji powder as the red starter. The objective of this study was to characterize the physicochemical parameters, microorganisms, proteolysis, lipolysis, and volatile profile of the cheese during 33 days of ripening. The gross composition was 56.7% (w/w) for total solids, 45.8% (w/w) for fat-in-dry matter, 2.58% (w/w) for salt content and 37.8% (w/w) for protein. The pH increased from 4.88 to 5.23 during ripening. The Monascus density first rose and then fell, while total mesophilic bacteria count declined steadily throughout the maturation. Proteolysis degree in experimental group was significantly higher than in control group without inoculation of red koji powder. Analysis of the fatty acid profile showed that the internal Monascus-fermentation also promoted lipolysis. A total of 63 volatile compounds, including 12 ketones, 14 alcohols, 15 acids, 13 esters, 5 aldehydes, 3 lactones and 1 phenol, were identified by gas chromatography-mass spectrometry (GC–MS) coupled with headspace solid-phase microextraction (HS-SPME). The main chemical groups of volatile compounds were ketones, alcohols, acids and esters whereas aldehydes, lactones, and phenols represented only minor components. At the end of ripening, the levels of ketones, alcohols, esters were significantly higher in the experimental cheese compared with the control. Our results therefore show that the internal Monascus-fermentation is not only a suitable technology to form red veins in the paste but also an effective method to impact the composition of volatile compounds in cheese, which can thus distinguish it from other internal mold-ripened cheeses and surface-ripened Monascus-fermented cheese.


Sign in / Sign up

Export Citation Format

Share Document