scholarly journals SYNTHESIS OF SILVER NANOPARTICLES FROM THE MEDICINAL PLANT BAUHINIA ACUMINATA AND BIOPHYTUM SENSITIVUM–A COMPARATIVE STUDY OF ITS BIOLOGICAL ACTIVITIES WITH PLANT EXTRACT

2016 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Elizabath Antony ◽  
Mythili Sathiavelu ◽  
Sathiavelu Arunachalam

Objective: The aim of current study was to synthesise silver nanoparticles from the leaf extracts (aqueous and methanol) of two medicinal plants Bauhinia acuminata and Biophytum sensitivum and to compare its biological activities with that of plant extract.Methods: Silver nanoparticles were synthesised, and it was characterised using UV-Visible spectroscopy and scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and GC-MS analysis were done for silver nanoparticle extract. The biological activities such as DPPH scavenging assay, haemolytic assay and antimicrobial assay were done for both nanoparticle and plant extract.Results: The UV-Visible spectroscopy showed the formation of nanoparticles in a size range of 400-460 nm. GC-MS analysis showed the presence of biologically active compounds like DL-alpha-tocopherol and Alpha-tocopherol-beta-D-mannose. FTIR analysis of silver nanoparticles and leaf extracts showed the formation of aldehydes, alkenes, amines, alcohols, etc., which confirmed the presence of the compounds present in plant extracts. SEM image showed the formation of nanoparticles of size 2 micrometre. Phytochemical analysis of plant extracts showed the presence of carbohydrates, phenols, flavonoids, saponins, tannins and terpenoids. The methanol extract of Bauhinia acuminata showed high DPPH scavenging activity of 90% compared to that of the silver nanoparticle. The percentage hemolysis of all extracts was found to be 6%-39%. The antimicrobial activity of leaf extracts showed excellent activity towards Bacillus cereus and Listeria monocytogens.Conclusion: The results of present study showed that the silver nanoparticle synthesised from the plant extract has many bioactive compounds and it was found to have significant biological activities but comparatively lesser than plant extract. It concludes the both plant and nanoparticle extract can be used as a potential resource for therapeutic purpose.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6144
Author(s):  
Madeeha Aslam ◽  
Fozia Fozia ◽  
Anadil Gul ◽  
Ijaz Ahmad ◽  
Riaz Ullah ◽  
...  

Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV–visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O–H stretching of carboxylic acid, N–H stretching of secondary amides, and C–N stretching of aromatic amines, and C–O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs.


2015 ◽  
Vol 1086 ◽  
pp. 7-10 ◽  
Author(s):  
S. Deena ◽  
Arun Dakshinamurthy ◽  
Paulraj Mosae Selvakumar

Green synthesis of silver nanoparticles using banana sap as a solvent, reducing agent and capping agent is reported in this work. Banana sap has also been used as a binder to incorporate silver nanoparticles into cotton fabric. UV-Visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Silver nanoparticle coated fabric showed high antimicrobial activity against gram negative bacteria such asPseudomonas aureginosaandEscherichia coli, and gram positive bacteria such asBacillus subtilisandStaphylococcus aureus.KeywordsGreen synthesis, Silver nanoparticles, banana sap, antimicrobial activity


2020 ◽  
Vol 17 (2) ◽  
pp. 136-145
Author(s):  
Rajesh Kumar Meena ◽  
Risikesh Meena ◽  
Dinesh Kumar Arya ◽  
Sapana Jadoun ◽  
Renu Hada ◽  
...  

The silver nanoparticle was successfully synthesized by using the help of Phyllanthus emblica plant extract as a reducing agent and aqueous silver nitrate as the precursor. Moreover, physical and chemical methods are widely used for the synthesis of nanoparticles, but these methods have expensive and not ecofriendly. This study highlights the green, rapid, facile, cost-effective, and ecofriendly synthesis and synthesized nanoparticles also investigate their antibacterial activity. Synthesized silver nanoparticles are analyzed by different techniques of modes like XRD, UV-Visible spectroscopy, TEM, FTIR, and photoluminescence (PL). The prepared AgNPs show characteristic absorption peak in UV-Visible spectroscopy due to SPR (surface plasmonic resonance) band between 400 to 450 nm wavelength, which was confirmed by TEM (transmission electron microscopy) image. X-ray diffraction (XRD) results showed the crystalline nature of AgNPs as well as the size of nanoparticles calculated with the help of TEM (20-25 nm) and XRD (25 nm). ATR spectroscopy identified the functional groups that are involved in the reduction of silver ion to AgNPs and the PL spectrum indicates higher emission in the green region and low emission peak in the UV region. Antibacterial activity of AgNPs analyzed against with the help of E.Coli bacteria and the result shows that a higher concentration of AgNPs is increasing as well as a zone of inhibition increased. This method is environmentally friendly, of low cost, and less expensive method for the fabrication of AgNPs in abundance which can be further helpful for biosensor devices as well as for other applications such as pollutant degradation, pharmaceutical, and hydrogen production, etc therefore can promote the application of green technology for the production of AgNPs.


2018 ◽  
Vol 24 (8) ◽  
pp. 5849-5854
Author(s):  
Shrey A Shah ◽  
Rahul Gundesha ◽  
Jayesh P Ruparelia

In this research an attempt has been made for instantaneous sensing of melamine, a potential milk adulterant, at room temperature with the help of bio-functionalized silver nanoparticles. The bio-functionalized nanoparticles were made using leaf extracts of Parthenium hysterophorous and Calotropis procera. Also these methods were compared with the nanoparticles that were functionalized with sulfanillic acid. Colorimetric change was the basis of sensing the melamine using these bio-functionalized silver nanoparticles. Melamine upto a limit of 0.1 ppm was detected by the particles prepared using Parthenium hysterophorous leaf extract at room temperature. UV-visible spectroscopy (200–800 nm range) was used to detect the changes in the absorbance of silver nanoparticles with the addition of melamine in different concentrations. DLS studies were carried out to confirm the presence of nanoparticles and to study their surface morphology during sensing. Comparative study showed that Parthenium hysterophorous (noxious hysterophorous) leaf extract was far better and accurate in detecting melamine and was as accurate as the silver nanoparticles functionalized with sulfanillic acid. This can be attributed to the fact that Parthenium hysterophorous leaf extract contains caffeic acid which worked as a reducing agent and also as the bio functionalized chemical. Thus, this method can be further used as a rapid detection of melamine. In addition, this method can be converted into prototype for detection of melamine in industries.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Kalaivani Vivehananthan ◽  
◽  
W.H. De Silva

In recent times, the biosynthesis of nanoparticles, which has led to significant growth in the field of nanotechnology. The use of plant extracts has become an impetus in this field as it is a simple and eco-friendly method. This study was an attempt to study different parameters in biosynthesis of silver nanoparticles using Azadirachta indica (Neem) leaf extracts. Four different process parameters such as concentrations of neem leaf extract, types of neem leaf extract, mixing ratios and the reaction time period were investigated on the formation of silver nanoparticles. Initially, the formation of silver nanoparticles was detected by the visual observation. Then, the synthesized silver nanoparticles were characterized using UV-Visible spectroscopy and scanning electron microscopy (SEM). The change of color from yellow to reddish brown color confirmed the formation of silver nanoparticles. The silver surface plasmon resonance (SPR) band obtained in the expected visible range of UV-Visible spectroscopy confirmed the synthesis of the nanoparticles. SEM images showed that silver nanoparticles are roughly spherical and of uniform particle size, and the average particle size is 100 nm. Further, the maximum absorbance of SPR band was considerably varied with different process parameters used in the present study. The UV-Visible spectra of 2.5 g/100 mL of crude neem leaf extract without any dilution showed maximum absorbance in the expected range with the mixing ratio of (Neem and AgNO3) 1:8. However, the maximum absorbance of modified neem leaf extracts (pH 10) resulted lower in value than the crude extracts in the 20 times diluted sample with the mixing ratio of 1:9. Moreover, modified extract with UV radiation exposure increased the absorbance in the expected visible range. It concludes that fine tuning of the bioprocess parameters would enhance nanoparticle synthesis.


2019 ◽  
Vol 8 (1) ◽  
pp. 577-583
Author(s):  
Mohammed Muqtader Ahmed ◽  
Farhat Fatima ◽  
Md. Khalid Anwer ◽  
Saad M. Alshahrani ◽  
Ahmed Alalaiwe ◽  
...  

Abstract In the current study, silver nanoparticles (AgNPs) were biosynthesised by microwave irradiation using Azadirachta indica. The formation of AgNPs was confirmed by surface plasmon resonance (SPR) band at 408 nm at UV-visible spectroscopy due to reduction of silver metal into (AgNPs) and further confirmed its particles in nano range. Nine different smart-gel hand wash were prepared by dispersing (AgNPs) in the HPMC and/or Pluronic F-127 polymers. The prepared smart gel hand wash was optimized based on pH, viscosity, spreadability, foamability, clarity. The optimized hand wash (NH5) had pH (6.6 ± 0.33), viscosity (66 ± 0.77, cp), spreadability (24.34 g-cm/s), foamability (100 mL). The optimized hand wash (NH5) showed a superior efficacy against pathogenic organisms in comparison to germ protection based marketed hand wash.


Author(s):  
Md. Abdullah Al Masud ◽  
Hamid Shaikh ◽  
Md. Shamsul Alam ◽  
M. Minnatul Karim ◽  
M. Abdul Momin ◽  
...  

Abstract Background The green synthesis strategy of metallic nanoparticles (NPs) has become popular due to being environmentally friendly. Stable silver nanoparticles (AgNPs) have been synthesized by natural products such as starch, soy protein, various extract of leaves, barks, and roots functioning both as reducing and stabilizing agents. Likewise, silk sericin (SS) is a globular protein discarded in the silk factory might be used for NP synthesis. In this research, we focus on the green synthesis and stabilization of AgNPs by SS as well as assessment of their antibacterial activities against some drug-resistant pathogen. Results SS was extracted from Bombyx mori silkworm cocoons in an aqueous medium. 17 w/w% of dry sericin powder with respect to the cocoon’s weight was obtained by freeze-drying. Furthermore, AgNPs conjugated to sericin, i.e., SS-capped silver nanoparticles (SS-AgNPs) were synthesized by easy, cost-effective, and environment-friendly methods. The synthesized SS-AgNPs were characterized by UV-visible spectroscopy, Fourier-transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction measurement. It has been found from the absorbance of UV-visible spectroscopy that a higher percent of SS-AgNPs was obtained at a higher concentration of silver nitrate solution. FTIR-ATR spectra showed that the carboxylate groups obtained from silk sericin act as a reducing agent for the synthesis of silver nanoparticles, while NH2+ and COO− act as a stabilizer of AgNPs. The X-ray diffractogram of SS-AgNPs was quite different from AgNO3 and sericin due to a change in the crystal structure. The diameter of AgNPs was around 20–70 nm observed using TEM. The synthesized SS-AgNPs exhibited strong antibacterial activity against multidrug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 20μg/mL. Conclusions This study encourages the use of Bombyx mori for the ecofriendly synthesis of SS-AgNPs to control multidrug-resistant microorganisms.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5798
Author(s):  
Amir Reza Sadrolhosseini ◽  
Ganesan Krishnan ◽  
Suhaidi Shafie ◽  
Suraya Abdul Rashid ◽  
Sulaiman Wadi Harun

This study used the carbon dots solution for the laser ablation technique to fabricate silver nanoparticles. The ablation time range was from 5 min to 20 min. Analytical methods, including Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, transmission electron microscopy, and Raman spectroscopy were used to categorize the prepared samples. The UV-visible and z-scan techniques provided optical parameters such as linear and nonlinear refractive indices in the range of 1.56759 to 1.81288 and 7.3769 × 10−10 cm2 W−1 to 9.5269 × 10−10 cm2 W−1 and the nonlinear susceptibility was measured in the range of 5.46 × 10−8 to 6.97 × 10−8 esu. The thermal effusivity of prepared samples, which were measured using the photoacoustic technique, were in the range of 0.0941 W s1/2 cm−2 K−1 to 0.8491 W s1/2 cm−2 K−1. The interaction of the prepared sample with fluoride was investigated using a Raman spectrometer. Consequently, the intensity of the Raman signal decreased with the increasing concentration of fluoride, and the detection limit is about 0.1 ppm.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Seyedeh Zahra Mirzaei ◽  
Hamed Esmaeil Lashgarian ◽  
Maryam Karkhane ◽  
Kiana Shahzamani ◽  
Alaa Kamil Alhameedawi ◽  
...  

AbstractFor the first time, an aqueous extract of Melilotus officinalis was used to synthesize bimetallic silver selenide chalcogenide nanostructures (Ag2Se-NCs). The formation of NCs was confirmed and characterized by UV–visible and FTIR spectroscopy, SEM and TEM imaging, XRD and EDX crystallography, zeta potential (ZP) and size distribution (DLS). The bioactivities of biosynthesized Ag2Se-NCs, such as antibacterial, antibiofilm, antioxidant and cytotoxicity potentials, were then examined. Bio-based Ag2Se-NCs were successfully synthesized with mostly spherical shape in the size range of 20–40 nm. Additionally, the MIC and MBC values of Ag2Se-NCs against β-lactam-resistant Pseudomonas aeruginosa (ATCC 27853) were 3.12 and 50 µg/ml, respectively. The DPPH scavenging potential of Ag2Se-NCs in terms of IC50 was estimated to be 58.52. Green-synthesized Ag2Se-NCs have been shown to have promising benefits and could be used for biomedical applications. Although the findings indicate promising bioactivity of Ag2Se-NCs synthesized by M. officinalis extract (MO), more studies are required to clarify the comprehensive mechanistic biological activities.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


Sign in / Sign up

Export Citation Format

Share Document