scholarly journals Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6258
Author(s):  
Miriam Spreda ◽  
Nicole Hauptmann ◽  
Veronika Lehner ◽  
Christoph Biehl ◽  
Klaus Liefeith ◽  
...  

In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-ε-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic. Thus, morphology, cytotoxicity and metabolic activity of human mesenchymal stromal cells (MSC) seeded directly on the materials were analyzed after three and six days of culturing. Further, osteoclastogenesis and osteoclastic activity were assessed using reverse-transcriptase real-time PCR of osteoclast-specific genes, EIA and morphologic aspects after four, eight, and twelve days. LCM scaffolds did not display cytotoxic effects on MSC. After three days, metabolic activity of MSC was enhanced on 3D porous scaffolds (PS) compared to 2D compact scaffolds (CS). Osteoclast activity seemed to be reduced at PS compared to cell culture plastic at all time points, while no differences in osteoclastogenesis were detectable between the materials. These results indicate a good cytocompatibility of LCM scaffolds. Interestingly, porous 3D structure induced higher metabolic activity of MSC as well as reduced osteoclast activity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vera Grotheer ◽  
Nadine Skrynecki ◽  
Lisa Oezel ◽  
Jan Grassmann ◽  
Joachim Windolf ◽  
...  

AbstractThe need for an autologous cell source for bone tissue engineering and medical applications has led researchers to explore multipotent mesenchymal stromal cells (MSC), which show stem cell plasticity, in various human tissues. However, MSC with different tissue origins vary in their biological properties and their capability for osteogenic differentiation. Furthermore, MSC-based therapies require large-scale ex vivo expansion, accompanied by cell type-specific replicative senescence, which affects osteogenic differentiation. To elucidate cell type-specific differences in the osteogenic differentiation potential and replicative senescence, we analysed the impact of BMP and TGF-β signaling in adipose-derived stromal cells (ASC), fibroblasts (FB), and dental pulp stromal cells (DSC). We used inhibitors of BMP and TGF-β signaling, such as SB431542, dorsomorphin and/or a supplemental addition of BMP-2. The expression of high-affinity binding receptors for BMP-2 and calcium deposition with alizarin red S were evaluated to assess osteogenic differentiation potential. Our study demonstrated that TGF-β signaling inhibits osteogenic differentiation of ASC, DSC and FB in the early cell culture passages. Moreover, DSC had the best osteogenic differentiation potential and an activation of BMP signaling with BMP-2 could further enhance this capacity. This phenomenon is likely due to an increased expression of activin receptor-like kinase-3 and -6. However, in DSC with replicative senescence (in cell culture passage 10), osteogenic differentiation sharply decreased, and the simultaneous use of BMP-2 and SB431542 did not result in further improvement of this process. In comparison, ASC retain a similar osteogenic differentiation potential regardless of whether they were in the early (cell culture passage 3) or later (cell culture passage 10) stages. Our study elucidated that ASC, DSC, and FB vary functionally in their osteogenic differentiation, depending on their tissue origin and replicative senescence. Therefore, our study provides important insights for cell-based therapies to optimize prospective bone tissue engineering strategies.


2011 ◽  
Vol 236 (11) ◽  
pp. 1342-1350 ◽  
Author(s):  
Yukio Hirabayashi ◽  
Yoshihiro Hatta ◽  
Jin Takeuchi ◽  
Isao Tsuboi ◽  
Tomonori Harada ◽  
...  

Hematopoiesis occurs in the bone marrow, where primitive hematopoietic cells proliferate and differentiate in close association with a three-dimensional (3D) hematopoietic microenvironment composed of stromal cells. We examined the hematopoietic supportive ability of stromal cells in a 3D culture system using polymer particles with grafted epoxy polymer chains. Umbilical cord blood-derived CD34+ cells were co-cultivated with MS-5 stromal cells. They formed a 3D structure in the culture dish in the presence of particles, and the total numbers of cells and the numbers of hematopoietic progenitor cells, including colony-forming unit (CFU)-Mix, CFU-granulocyte-macrophage, CFU-megakaryocyte and burst-forming unit-erythroid, were measured every seven days. The hematopoietic supportive activity of the 3D culture containing polymer particles and stromal cells was superior to that of 2D culture, and allowed the expansion and maintenance of hematopoietic progenitor cells for more than 12 weeks. Various types of hematopoietic cells, including granulocytes, macrophages and megakaryocytes at different maturation stages, appeared in the 3D culture, suggesting that the CD34+ cells were able to differentiate into a range of blood cell types. Morphological examination showed that MS-5 stromal cells grew on the surface of the particles and bridged the gaps between them to form a 3D structure. Hematopoietic cells slipped into the 3D layer and proliferated within it, relying on the presence of the MS-5 cells. These results suggest that this 3D culture system using polymer particles reproduced the hematopoietic phenomenon in vitro, and might thus provide a new tool for investigating hematopoietic stem cell–stromal cell interactions.


2013 ◽  
Vol 28 (3) ◽  
pp. 265-268 ◽  
Author(s):  
Kaoru Kobayashi ◽  
Eri Kajiwara ◽  
Masayuki Ishikawa ◽  
Hanaka Mimura ◽  
Hidenobu Oka ◽  
...  

2018 ◽  
Vol 773 ◽  
pp. 360-364 ◽  
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon ◽  
Rattiporn Kaypetch

This study aimed to investigate the antifungal, anti-inflammatory and cytotoxic effects of Zingiber cassumunar gel. The gel was prepared from essential oil of Zingiber cassumunar rhizome by the Thailand Institute of Scientific and Technological Research. Antifungal activity of the gel was firstly determined by the well diffusion method against Candida albicans ATCC 10238 and candida strain isolated from the patient’s lesion. Then, the Agar overlay technique was used to test the cytotoxicity of Z. cassumunar gel on mouse fibroblasts (ATCC clone 929) according to ISO 7405. For anti-inflammatory effect of the gel, TPA (carrageenan lambda type IV, 12-O-tetradecanoylphorbol-13- acetate)-induced mouse ear edema method was used. The results of well diffusion showed that Z. cassumunar gel was quite a potent antifungal agent against both strains of tested C. albicans with inhibition zones of 12-13 mm. In the cytotoxicity test, the gel exhibited no toxicity to cell culture. In addition, topical administration of Z. cassumunar gel could decrease mouse ear edema induced by TPA. At 30 and 60 min-time points, Z. cassumunar gel showed higher anti-inflammatory activity than triamcinolone which was used as reference anti-inflammatory drug. In conclusion, gel prepared from Z. cassumunar oil showed antifungal activity against both strains of C. albicans. In addition, its anti-inflammatory effect was demonstrated within 30 min by the TPA-induced mouse ear edema model. The gel was non-toxic to cell culture after 24-h incubation. Further studies are needed to clarify the safety and benefit of this gel for clinical use in the treatment of candidal infection and inflammation.


Cytotherapy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. S164-S165
Author(s):  
A. Laitinen ◽  
T. Kaartinen ◽  
S. Oja ◽  
M. Korhonen ◽  
K. Alfthan ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Pirmin H. Lakner ◽  
Michael G. Monaghan ◽  
Yvonne Möller ◽  
Monilola A. Olayioye ◽  
Katja Schenke-Layland

Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 46 ◽  
Author(s):  
Máté Mackei ◽  
Kata Orbán ◽  
Andor Molnár ◽  
László Pál ◽  
Károly Dublecz ◽  
...  

Trichothecene mycotoxins such as T-2 toxin cause severe problems for agriculture, as well as for veterinary medicine. As liver is one of the key organs in metabolism, the main aim of our study was to investigate the immunomodulatory and cytotoxic effects of T-2 toxin, using primary hepatocyte mono-culture and hepatocyte—nonparenchymal cell (predominantly Kupffer cell) co-culture models of chicken. Cultures were exposed to 10 (T10 group), 100 (T100 group) and 1000 (T1000 group) nmol/L T-2 toxin treatment for 8 or 24 h. Alterations of cellular metabolic activity, the production of reactive oxygen species (extracellular H2O2), heat shock protein 70 (HSP70), and the concentration of different inflammatory cytokines such as interleukin (IL-)6 and IL-8 were investigated. Metabolic activity was intensely decreased by T-2 toxin administration in all of the cell culture models, in every applied concentration and incubation time. Concentrations of HSP70 and IL-8 were significantly increased in hepatocyte mono-cultures exposed to higher T-2 toxin levels (both in T100 and T1000 groups for HSP70 and in T1000 group for IL-8, respectively) compared to controls after 24 h incubation. Similarly, IL-6 levels were also significantly elevated in the T100 and T1000 groups in both of mono- and co-cultures, but only after 8 h of incubation time. In spite of the general harmful effects of T-2 toxin treatment, no significant differences were observed on reactive oxygen species production. Furthermore, the two cell culture models showed different levels of H2O2, HSP70, and IL-8 concentrations independently of T-2 toxin supplementation. In conclusion, the established primary cell cultures derived from chicken proved to be proper models to study the specific molecular effects caused by T-2 toxin. Metabolic activity and immune status of the different examined cell cultures were intensively affected; however, no changes were found in H2O2 levels.


Gerontology ◽  
2019 ◽  
Vol 65 (2) ◽  
pp. 174-185 ◽  
Author(s):  
Magdalena M. Schimke ◽  
Swaraj Paul ◽  
Katharina Tillmann ◽  
Günter Lepperdinger ◽  
Robert G. Stigler

Background: Due to aging, tissue regeneration gradually declines. Contemporary strategies to promote tissue-specific regeneration, in particular in elderly patients, often include synthetic material apt for implantation primarily aiming at upholding body functions and regaining appropriate anatomical and functional integrity. Objective: Biomaterials suitable for complex reconstruction surgical procedures have to exert high physicochemical stability and biocompatibility. Method: A polymer made of poly-L-lactic acid and poly-ε-caprolactone was synthesized by means of a novel tin-free catalytic process. The material was tested in a bioreactor-assisted perfusion culture and implanted in a sheep model for lateral augmentation of the mandible. Histological and volumetric evaluation was performed 3 and 6 months post-implantation. Results: After synthesis the material could be further refined by cryogrinding and sintering, thus yielding differently porous scaffolds that exhibited a firm and stable appearance. In perfusion culture, no disintegration was observed for extended periods of up to 7 weeks, while mesenchymal stromal cells readily attached to the material, steadily proliferated, and deposited extracellular calcium. The material was tested in vivo together with autologous bone marrow-derived stromal cells. Up to 6 months post-implantation, the material hardly changed in shape with composition also refraining from foreign body reactions. Conclusion: Given the long-term shape stability in vivo, featuring imperceptible degradation and little scarring as well as exerting good compatibility to cells and surrounding tissues, this novel biomaterial is suitable as a space filler in large anatomical defects.


Sign in / Sign up

Export Citation Format

Share Document