scholarly journals Cyclodextrin Complexed Lipid Nanoparticles of Irbesartan for Oral Applications: Design, Development, and In Vitro Characterization

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7538
Author(s):  
Narendar Dudhipala ◽  
Swetha Ettireddy ◽  
Ahmed Adel Ali Youssef ◽  
Goverdhan Puchchakayala

Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-βCD (HP-βCD) inclusion complex than beta-CD (βCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-βCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, −30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN dispersions showed sustained release of IR compared to the IR suspension and the IR-SLN dispersions. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.

Author(s):  
AMRUTHA U ◽  
SUSHMITHA B ◽  
SHAIK RUBINA ◽  
PADMINI IRIVENTI

Objective: The objective of the present study was to formulate and evaluate caffeine loaded solid lipid nanoparticles (SLNs) in the treatment of clinical mastitis. Methodology: These were prepared by homogenization technique using cholesterol, tween 80, and chloroform as excipients. Preformulation studies such as ultraviolet spectrophotometry, Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC) were performed for the drug. Entrapment efficiency and in vitro dissolution studies were carried out for prepared SLN’s and the optimum formulation (F2) was taken for further studies such as FTIR, DSC, scanning electron microscopy, particle size, and zeta potential analysis. Results: Obtained results stated that prepared SLNs are roughly spherical in nature and are in nanorange. These were incorporated in Carbopol gel and further evaluation studies such as pH, spreadability, viscosity, homogeneity, and in vitro drug diffusion studies were carried out. All the results obtained state that prepared nanogel has shown sustained release of drug. The antimicrobial study was carried out using Staphylococcus aureus and it was confirmed by appearance of the zone of inhibition. Conclusion: Nanogel that contains Caffeine SLNs with 1:2 ratio drug:lipid has shown good in vitro release. Sustained release of Caffeine drug till 12 h was achieved by delivering it in the form of nanogel.


Author(s):  
B. SURENDRA ◽  
M. NAVEEN KUMAR ◽  
PADMINI IRIVENTI

Objective: The objective of the present study was to formulate and evaluate caffeine-loaded solid lipid nanoparticles (SLNs) in the treatment of clinical mastitis. Methods: These were prepared by homogenization technique using stearic acid, Tween 80, and chloroform as excipients. Pre-formulation studies such as UV spectrophotometry, Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC) were performed for the drug. Entrapment efficiency and in vitro dissolution studies were carried out for prepared SLNs and the optimum formulation (F2) was taken for further studies such as FTIR, DSC, SEM, particle size, and zeta potential analysis. Results: Obtained results stated that prepared SLNs are roughly spherical in nature and are in nano range. These were incorporated in Carbopol gel and further evaluation studies such as pH, spreadability, viscosity, homogenicity, and in vitro drug diffusion studies were carried out. All the results stated that prepared nanogel has shown sustained release of drug. Antimicrobial study was carried out using Staphylococcus aureus and it was confirmed by the appearance of zone of inhibition. Conclusion: Nanogel that contains caffeine SLNs with 1:2 ratio drug:lipid has shown good in vitro release. Sustained release of caffeine drug till 12 h was achieved by delivering it in the form of nanogel.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (11) ◽  
pp. 19-23
Author(s):  
J Shaikh ◽  
◽  
S. V. Deshmane ◽  
R. N Purohit ◽  
K. R. Biyani

The main objective of the present study was to enhance the solubility and dissolution rate of poorly water soluble aceclofenac using its solid dispersion with β-cyclodextrin. FTIR and DSC study was carried out to find out any incompatibility. The phase solubility of drug was carried out in 1, 2, 5, and 10% of β-cyclodextrin in distilled water. Kneading method and solvent evaporation method was use to prepared solid dispersion of aceclofenac and β-cyclodextrin. Different evaluation tests like solubility study in different solvents, PXRD and in vitro dissolution study of aceclofenac- β-cyclodextrin inclusion complex were carried out. The overall finding indicated that β-cyclodextrin is a desirable water soluble carrier, that helps in increasing solubility of drug. Due to its structural feature, β-cyclodextrin forms a good inclusion complex that decreases contact angle of drug with water molecules by increasing wetting properties. Hence, it can be concluded that, β-cyclodextrin is better water soluble carrier molecule in terms of its compatibility and increasing solubility behavior of poorly water soluble drug aceclofenac.


2017 ◽  
Vol 16 (10) ◽  
pp. 2359-2364
Author(s):  
Zwanden Sule Yahaya ◽  
Kenneth C. Ofokansi ◽  
Suzane T. Allagh ◽  
Pat G. Bhatia

Purpose: To investigate experimentally the inclusion of artemether into the cavity of  hydroxypropyl-β-cyclodextrin and examine its effect on the solubility and dissolution rate of the drug.Methods: Inclusion complexes of artemether with hydroxypropyl-β-cyclodextrin of molar ratios 1:1, 1:2 and 1:3 were prepared using the kneading method. Phase solubility analysis and in vitro dissolution studies were utilized in evaluating the influence of inclusion complex formation on the solubility and dissolution rate of the drug. The complexes were characterized using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The inclusion complex containing equimolar concentrations of artemether and hydroxypropyl-β-cyclodextrin was then formulated into tablets via direct compression and  evaluated for various pharmaceutical characteristics including hardness, friability, absolute drug content and comparative in vitro dissolution profiles with some  commercially available brands of artemether.Results: The phase solubility diagram for the formed complexes in water at 37 oC indicated a linear curve soluble complex system (referred to as the AL system), and a stability constant (KC) value of 143 M-1. Evidence consistent with inclusion complex formation was obtained using FT-IR and DSC. The formulated inclusion complex tablets exhibited a higher rate of dissolution than the pure drug and commercial brands, showing 3.9-, 1.8- and 1.6-fold increases, respectively, over a period of 15 min.Conclusion: Inclusion complexation of artemether with hydroxypropyl-β-cyclodextrin is a promising approach to enhance the solubility and dissolution rate of the drug.Keywords: Artemether, 2-Hydroxypropyl-β-cyclodextrin, Dissolution, Solubility enhancement, Inclusion complex


Author(s):  
JOGABRATA TRIPATHY ◽  
SUBHASHREE SAHOO ◽  
AFRASIM MOIN ◽  
SIDDARAMAIAH ◽  
D. V. GOWDA

Objective: The study aimed to develop and evaluate an orally disintegrating tablet that contains pilocarpine and 2-hydroxy propyl β-cyclodextrin as an inclusion complex that is prepared by lyophilization used for treatment for dry mouth. Pilocarpine is utilized to treat dry mouth disorder. The inclusion complex lowers the taste of pilocarpine through the oral mucosa by the use of 2-hydroxy propyl β-cyclodextrin. Methods: The in vitro release from the insertion complex is also been studied. The parameters like differential scanning calorimetry (DSC), Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and morphological study have been evaluated. The design of an experiment is carried out based on the concentration of croscarmellose sodium (CCS) and microcrystalline cellulose (MCC). Evaluation of the prepared orally disintegrating tablets have been carried out by different test methods like weight variation, thickness, drug content, disintegration, and in vitro dissolution study. Results: Orally disintegrating tablets are studied by utilizing the immediate pressure technique. Pilocarpine indicates the anhydrous crystalline medication, displaying sharp endothermic top at 120.2 °C, bend of 2-HPβCD demonstrates an exceptionally wide endothermal wonder among 55-100 °C for DSC. In pilocarpine spectra, characteristic band of aromatic C-H stretch at 3277 cm-1, C=C stretching at 1608 cm-1, C-N stretching at 1445 cm-1 and methoxy (CH3-O-) stretch at 2921 cm-1 was observed. The investigation shows that tablet hardness of 4.3N, breaking downtime of 12 sec and mean disintegration time is 1.562 min. Conclusion: The different diluents and super disintegrating have been applied for the quick elevation of dry mouth that helps us for patient compliance.


2018 ◽  
Vol 48 (9) ◽  
pp. 1420-1438 ◽  
Author(s):  
Saeideh Masoumi ◽  
Sahar Amiri ◽  
Seyed Hajir Bahrami

Poor solubility and low dissolution rate of ibuprofen (IBU) in the aqueous gastro-intestinal fluids restrict its application, absorption, distribution, target organ delivery, and bioavailability. For improvement of aqueous solubility of IBU, supramolecular nanocontainers of IBU/cyclodextrin were prepared via formation of inclusion complex between ibuprofen and cyclodextrins (α-cyclodextrin and β-cyclodextrin) at various conditions (at room temperature at 25℃ and under sonic energy). The formation of inclusion complex between IBU and cyclodextrins can be confirmed by hydrogen nuclear magnetic resonance, differential scanning calorimetry, fourier transform Infrared spectroscopy (FTIR), X-ray diffraction, and scanning electron microscopy study. FTIR of pure IBU and cyclodextrins is similar to the obtained complex, which indicated intactness of drug in the complex. The encapsulation of IBU in cyclodextrins cavity improved its solubility, phase solubility, and in vitro dissolution and also controlled its release which ensures the long-term delivery. Electro-spun nanofibers of poly-ɛ-caprolactone containing IBU/cyclodextrins is a promising method for controlled drug delivery electro-spun which is bead-free without any aggregation on the surface.


2013 ◽  
Vol 1 (04) ◽  
pp. 89-94
Author(s):  
Shallu Sandhan ◽  
Kavita Sapra ◽  
Jitender Mor

The aim of present investigation was to enhance the solubility of glipizide (BCS Class II). Glipizide is an oral antidiabetic agent with relatively short elimination half life. Inclusion complex of Glipizide with _-cyclodextrin was prepared by kneading method and evaluated for its in-vitro release. Phase solubility studies were performed according to method reported by Higuchi and Connors which was classified as AL type characterized by apparent 1:1 stability constant. The Glipizide and Beta Cyclodextrin found to be compatible which was observed from FTIR spectra of Glipizide _- CD Complex. The dissolution study of Glipizide _- CD complex shows significant increase in the drug release than pure drug. Matrix Glipizide _- CD complex tablet complex equivalent to 10 mg Glipizide were prepared by using Hydroxy propyl methyl cellulose (HPMC), Carboxy methyl cellulose sodium (NaCMC) and Microcrytalline cellulose (MCC). The tablets were evaluated for various tests like hardness, friability, disintegration and in-vitro dissolution studies.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Purwantiningsih Sugita ◽  
Bambang Srijanto ◽  
Budi Arifin ◽  
Fithri Amelia ◽  
Mahdi Mubarok

Chitosan, a modification of shrimp-shell waste, has been utilized as microcapsule. However, it’s fragile gel property needs to be strengthened by adding glutaraldehyde (glu) and natural hydrocolloid guar gum (gg). This research’s purposes were to study dissolution behaviour of ketoprofen and infar through optimum chitosan-guar gum microcapsule. Into 228.6 mL of 1.75% (w/v) chitosan solution in 1% (v/v) acetic acid,38.1 mL of gg solution was added with concentration variation of 0.35, 0.55, and 0.75% (w/v) for ketoprofen microcapsules and 0.05, 0.19, and 0.33% (w/v) for infar microcapsules, and stirred with magnetic stirrer until homogenous. Afterwards, 7.62mL of glu was added slowly under stirring, with concentrations varied: 3, 3.5, and 4% (v/v) for ketoprofen microcapsules, and 4, 4.5, and 5% (v/v) for infar microcapsules. All mixtures were shaked for 20 minutes for homogenization. All mixtures wereshaked for 20 minutes for homogenization. Into each  microcapsule mixture for ketoprofen, a solution of 2 g of ketoprofen in 250 mL of 96% ethanol was added, whereas solution of 100 mg of in 250 mL of 96% ethanol was added into each microcapsule mixture for infar. Every mixture was then added with 5 mL of 2% Tween-80 and stirred with magnetic stirrer for an hour at room temperature. Everymixture was then added with 5 mL of 2% Tween-80 and stirred with magnetic stirrer for an hour at room temperature. Conversion of suspension into fine powders/granules (microcapsules) was done by using spray dryer. The data of [gg], [glu], and medicine’s content from each microcapsule were treated with Minitab 14 software to obtain optimum [gg] and [glu] for microencapsulation. The dissolution behaviour of optimum ketoprofen and infar microcapsules were investigated. The result of optimization by using Minitab Release 14 software showed that among the microcapsule compositions of [gg] and [glu] were 0.35% (w/v) and 3.75% (v/v), respectively, optimum to coat ketoprofen, whereas [gg] and [glu] of 0.05% (w/v) and4.00% (v/v), respectively, optimum to coat infar, at constant chitosan concentration (1.75% [w/v]). In vitro dissolution profile showed that chitosan-guar gum gel microcapsule was more resistant in intestinal pH condition (rather basic) compared with that in gastric pH (very acidic).


Sign in / Sign up

Export Citation Format

Share Document