scholarly journals The Overexpression of YALI0B07117g Results in EnhancedErythritol Synthesis from Glycerol by the Yeast Yarrowia lipolytica

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7549
Author(s):  
Mateusz Szczepańczyk ◽  
Dorota A. Rzechonek ◽  
Adam Dobrowolski ◽  
Aleksandra M. Mirończuk

The unconventional yeast Yarrowia lipolytica is used to produce erythritol from glycerol. In this study, the role of the erythrose reductase (ER) homolog YALI0B07117g in erythritol synthesis was analyzed. The deletion of the gene resulted in an increased production of mannitol (308%) and arabitol (204%) before the utilization of these polyols began. The strain overexpressing the YALI0B07117g gene was used to increase the erythritol yield from glycerol as a sole carbon source in batch cultures, resulting in a yield of 0.4 g/g. The specific consumption rate (qs) increased from 5.83 g/g/L for the WT strain to 8.49 g/g/L for the modified strain and the productivity of erythritol increased from 0.28 g/(L h) for the A101 strain to 0.41 g/(L h ) for the modified strain. The application of the research may prove positive for shortening the cultivation time due to the increased rate of consumption of the substrate combined with the increased parameters of erythritol synthesis.

2021 ◽  
Author(s):  
Mateusz Szczepańczyk ◽  
Dorota A. Rzechonek ◽  
Adam Dobrowolski ◽  
Aleksandra Maria Mirończuk

Abstract BackgroundPolyols are a group of sweet alcohols, frequently used as food additives. The constantly rising demand for polyols requires the application of new strategies to increase the production. Erythritol is synthesized by the yeast Yarrowia lipolytica under high osmotic pressure as an osmoprotectant. The metabolic pathway resulting in erythritol production remains partially unknown. However, the last reaction resulting in erythritol synthesis is conducted by an erythrose reductase (ER).ResultsThe Y. lipolytica strain was genetically modified to increase the erythritol yield and productivity, using glycerol as a sole carbon source. The modification focused on the ER homologue YALI0B07117g after the in silico analysis of the protein sequences of all reported ER homologues. Initial results in shake-flask experiments proved the influence of the gene YALI0B07117g in erythritol synthesis. Deletion of the gene resulted in 3-fold and 2-fold increased production of mannitol and arabitol, respectively. Overexpression of the native ER homologue gene showed a positive influence on erythritol production. Bath cultures were conducted and the obtained strain reached the yield of 0.4 g/g. The specific consumption rate (qs) increased from 5.83 g/g/L for the WT strain to 8.49 g/g/L for the engineered strain, while the productivity of erythritol increased from 0.28 g/L/h for the A101 strain to 0.41 g/L/h for the modified strain.ConclusionsOverexpression of the gene YALI0B07117g resulted in increased production of erythritol in the yeast Y. lipolytica. Disruption of the metabolic pathway by deletion of the gene results in higher production titers of mannitol and arabitol. Application of the research may prove positive for shortening the cultivation time due to the increased consumption rate of the substrate combined with increased parameters of erythritol synthesis.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 88
Author(s):  
Paulina Snopek ◽  
Dorota Nowak ◽  
Bartłomiej Zieniuk ◽  
Agata Fabiszewska

Yarrowia lipolytica is one of the most studied non-conventional forms of yeast, exhibiting a high secretory capacity and producing many industrially important and valuable metabolites. The yeast conceals a great biotechnological potential to synthesize organic acids, sweeteners, microbial oil, or fragrances. The vast majority of bioprocesses are carried out in bioreactors, where suitable culture conditions are provided. In the current study, the effect of agitation speed (200–600 rpm) and air flow rate (0.0375–2.0 dm3/(dm3 × min)) on the biomass yield and lipase activity of Y. lipolytica KKP 379 is analyzed in a growth medium containing waste fish oil. The increase of aeration intensity limited the period of oxygen deficit in the medium. Simultaneously, an increase in lipolytic activity was observed from 2.09 U/cm3 to 14.21 U/cm3; however, an excessive agitation speed likely caused oxidative or shear stresses, and a reduction in lipolytic activity was observed. Moreover, it is confirmed that the synthesis of lipases is related to oxygen consumption, pH, and the yeast growth phase, and appropriate process selection may provide two advantages, namely, the maximum use of the waste carbon source and the production of lipolytic enzymes that are valuable in many industries.


2020 ◽  
Author(s):  
Ashish Prabhu ◽  
Rodrigo Ledesma- Amaro ◽  
Carol Sze Ki Lin ◽  
Frederic Coulon ◽  
Vijay kumar Thakur ◽  
...  

Abstract Background Xylose is a most prevalent sugar available in hemicellulose fraction of lignocellulosic biomass (LCB) and of great interest for the green economy. Unfortunately, most of the cell factories cannot inherently metabolize xylose as sole carbon source. Yarrowia lipolytica is a non-conventional yeast to produce industrially important metabolites, and it is able to metabolize a large variety of substrates including both hydrophilic and hydrophobic carbon sources. However, Y. lipolytica lacks effective metabolic pathway for xylose uptake and only scarce information is available on utilization of xylose. For the economically feasible of LCB-based biorefineries, effective utilization of both pentose and hexose sugars is obligatory. Results In the present study, succinic acid (SA) production from xylose by Y. lipolytica was examined. To this end, Y. lipolytica PSA02004 strain was engineered by overexpressing pentose pathway cassette comprising of xylose reductase ( XR ), xylitol dehydrogenase ( XDH ) and xylulose kinase ( XK ) gene. The recombinant strain exhibited a robust growth on xylose as sole carbon source and accumulated SA (3.8 g/L) with a yield of 0.19 g/g in shake flask studies. Substrate inhibition studies revealed a marked negative impact on cell growth and product formation above 60 g/L xylose concentration. The modelling based on inhibition kinetics revealed that Aiba model showed better fit with experimental data, which resulted the correlation coefficient (R 2 ) of 0.82 and inhibition constant (K I ) 88.9 g/L. The batch cultivation of recombinant strain in bioreactor resulted in a maximum biomass concentration of 7.3 g/L and SA titer of 11.2 g/L with the yield of 0.18 g/g. Similar results in term of cell growth and SA production were obtained with xylose-rich hydrolysate derived from sugarcane bagasse. The fed-batch fermentation yielded biomass concentration of 11.8 g/L (OD 600 : 56.1) and SA titer of 22.3 g/L with a gradual decrease in pH below 4.0. Acetic acid was obtained as a main byproduct in all the fermentations. Conclusion The recombinant strain displayed potential bioconversion of xylose to succinic acid. Further this study provided a new insight on conversion of LCB into value-added products. To the best of our knowledge, this is the first study on SA production by Y. lipolytica using xylose as a sole carbon source.


2020 ◽  
Author(s):  
Ashish Prabhu ◽  
Rodrigo Ledesma- Amaro ◽  
Carol Sze Ki Lin ◽  
Frederic Coulon ◽  
Vijay kumar Thakur ◽  
...  

Abstract Background : Xylose is a most prevalent sugar available in hemicellulose fraction of lignocellulosic biomass (LCB) and of great interest for the green economy. Unfortunately, most of the cell factories cannot inherently metabolize xylose as sole carbon source. Yarrowia lipolytica is a non-conventional yeast to produce industrially important metabolites. The yeast is able to metabolize a large variety of substrates including both hydrophilic and hydrophobic carbon sources. However, Y. lipolytica lacks effective metabolic pathway for xylose uptake and only scarce information is available on utilization of xylose. For the economically feasibility of LCB-based biorefineries, effective utilization of both pentose and hexose sugars is obligatory. Results : In the present study, succinic acid (SA) production from xylose by Y. lipolytica was examined. To this end, Y. lipolytica PSA02004 strain was engineered by overexpressing pentose pathway cassette comprising of xylose reductase ( XR ), xylitol dehydrogenase ( XDH ) and xylulose kinase ( XK ) gene. The recombinant strain exhibited a robust growth on xylose as sole carbon source and produced substantial amount of SA. The inhibition of cell growth and SA formation was observed above 60 g/L xylose concentration. The batch cultivation of recombinant strain in bioreactor resulted in a maximum biomass concentration of 7.3 g/L and SA titer of 11.2 g/L with the yield of 0.19 g/g. Similar results in term of cell growth and SA production were obtained with xylose-rich hydrolysate derived from sugarcane bagasse. The fed-batch fermentation yielded biomass concentration of 11.8 g/L (OD 600 : 56.1) and SA titer of 22.3 g/L with a gradual decrease in pH below 4.0. Acetic acid was obtained as a main byproduct in all the fermentations. Conclusion : The recombinant strain displayed potential for bioconversion of xylose to SA. Further, this study provided a new insight on conversion of lignocellulosic biomass into value-added products. To the best of our knowledge, this is the first study on SA production by Y. lipolytica using xylose as a sole carbon source.


2021 ◽  
Vol 22 (17) ◽  
pp. 9282
Author(s):  
Piotr Hapeta ◽  
Patrycja Szczepańska ◽  
Tadeusz Witkowski ◽  
Jean-Marc Nicaud ◽  
Anne-Marie Crutz-Le Coq ◽  
...  

The development of efficient bioprocesses requires inexpensive and renewable substrates. Molasses, a by-product of the sugar industry, contains mostly sucrose, a disaccharide composed of glucose and fructose, both easily absorbed by microorganisms. Yarrowia lipolytica, a platform for the production of various chemicals, can be engineered for sucrose utilization by heterologous invertase expression, yet the problem of preferential use of glucose over fructose remains, as fructose consumption begins only after glucose depletion what significantly extends the bioprocesses. We investigated the role of hexose transporters and hexokinase (native and fructophilic) in this preference. Analysis of growth profiles and kinetics of monosaccharide utilization has proven that the glucose preference in Y. lipolytica depends primarily on the affinity of native hexokinase for glucose. Interestingly, combined overexpression of either hexokinase with hexose transporters significantly accelerated citric acid biosynthesis and enhanced pentose phosphate pathway leading to secretion of polyols (31.5 g/L vs. no polyols in the control strain). So far, polyol biosynthesis was efficient in glycerol-containing media. Moreover, overexpression of fructophilic hexokinase in combination with hexose transporters not only shortened this process to 48 h (84 h for the medium with glycerol) but also allowed to obtain 23% more polyols (40 g/L) compared to the glycerol medium (32.5 g/L).


2018 ◽  
Author(s):  
Sixto M. Leal ◽  
Elaine Newman ◽  
Kalai Mathee

ABSTRACTRegardless of the site of infectivity, all pathogens require high energetic influxes. This energy is required to counterattack the host immune system and in the absence the bacterial infections are easily cleared by the immune system. This study is an investigation into one highly bioenergetic pathway inPseudomonas aeruginosainvolving the amino acid L-serine and the enzyme L-serine deaminase (L-SD).P. aeruginosais an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. L-SD has been linked directly to the pathogenicity of several organisms including but not limited toCampylobacter jejuni, Mycobacterium bovis,Streptococcus pyogenes, andYersinia pestis. We hypothesized thatP. aeruginosaL-SD is likely to be critical for its virulence. The genome sequence analysis revealed the presence of two L-SD homologs encoded bysdaAandsdaB.We analyzed the ability ofP. aeruginosato utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains ofsdaA(PAOsdaA) andsdaB(PAOsdaB) with their isogenic parentP. aeruginosaPAO1. We demonstrate thatP. aeruginosais unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine. Both SdaA and SdaB contribute to L-serine deamination, 34 % and 66 %, respectively. Glycine was also shown to increase the L-SD activity especially from SdaB. Glycine-dependent induction requires the inducer serine. The L-SD activity from both SdaA and SdaB is inhibited by the amino acid L-leucine. These results suggest thatP. aeruginosaL-SD is quite different from the characterizedE. coliL-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as sole carbon source were isolated. In addition, suicide vectors were constructed which allow for selective mutation of thesdaAandsdaBgenes on anyP. aeruginosastrain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity.


2013 ◽  
Vol 80 (5) ◽  
pp. 1660-1669 ◽  
Author(s):  
Falk Matthäus ◽  
Markus Ketelhot ◽  
Michael Gatter ◽  
Gerold Barth

ABSTRACTThe codon-optimized genescrtBandcrtIofPantoea ananatiswere expressed inYarrowia lipolyticaunder the control of theTEF1promoter ofY. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis inY. lipolytica,GGS1andHMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in aY. lipolyticastrain withPOX1toPOX6andGUT2deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity ofY. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1(dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.


Author(s):  
Motharasan Manogaran ◽  
Nur Adeela Yasid ◽  
Ahmad Razi Othman ◽  
Baskaran Gunasekaran ◽  
Mohd Izuan Effendi Halmi ◽  
...  

The application of microorganisms in azo dye remediation has gained significant attention, leading to various published studies reporting different methods for obtaining the best dye decolouriser. This paper investigates and compares the role of methods and media used in obtaining a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely rare to find. It was demonstrated that a prolonged acclimation under low substrate availability successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites of consortium JR3 showed an improvement in mung bean’s seed germination and shoot and root length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation at 0.7 g/L ammonium sulphate, pH 8, 35 °C, and RR120 concentrations of 200 ppm. Decolourisation modelling utilising response surface methodology (RSM) successfully improved decolourisation even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate, pH 8.29, 34.5 °C and 200 ppm RR120.


2019 ◽  
Vol 29 (1) ◽  
pp. 141-150
Author(s):  
Li Yun Qing ◽  
Xue Qing Jie ◽  
Yang Yuan Yuan ◽  
Wang Hui ◽  
Li Xiu Zhen

2014 ◽  
Vol 80 (17) ◽  
pp. 5349-5358 ◽  
Author(s):  
Muhammad Afzal ◽  
Sulman Shafeeq ◽  
Oscar P. Kuipers

ABSTRACTComparison of the transcriptome ofStreptococcus pneumoniaestrain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including thelacgene cluster, which is organized into two operons, i.e.,lacoperon I (lacABCD) andlacoperon II (lacTFEG). Deletion of the DeoR family transcriptional regulatorlacRthat is present downstream of thelacgene cluster revealed elevated expression oflacoperon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor oflacoperon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion oflacRdid not affect the expression oflacoperon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZand PlacT-lacZin the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation oflacoperon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator oflacoperon II in the presence of lactose and CcpA-independent regulation of thelacgene cluster inS. pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document