scholarly journals Amplified Fluorescence by ZnO Nanoparticles vs. Quantum Dots for Bovine Mastitis Acute Phase Response Evaluation in Milk

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 549 ◽  
Author(s):  
Narsingh R. Nirala ◽  
Giorgi Shtenberg

Bovine mastitis (BM) is a prominent inflammatory disease affecting the dairy industry worldwide, originated by pathogenic agent invasion onto the mammary gland. The early detection of new BM cases is of high importance for infection control within the herd. During inflammation, various biomarkers are released into the blood circulation, which are consequently found in milk. Herein, the lysosomal activity of N-acetyl-β-d-glucosaminidase (NAGase), a predominant BM indicator, was utilized for highly sensitive clinical state differentiation. The latter is achieved by the precise addition of tetraethyl orthosilicate-coated zinc oxide nanostructures (quantum dots or nanoparticles, individually) onto a conventional assay. Enhanced fluorescence due to the nanomaterial accumulative near-field effect is achieved within real milk samples, contaminated with Streptococcus dysgalactiae, favoring quantum dots over nanoparticles (>7-fold and 3-fold, respectively), thus revealing significant differentiation between various somatic cell counts. The main advantage of the presented sensing concept, besides its clinically relevant concentrations, is the early bio-diagnostic detection of mastitis (subclinical BM) by using a simple and cost-effective experimental setup. Moreover, the assay can be adapted for BM recovery prognosis evaluation, and thus impact on udder health status, producing an alternative means for conventional diagnosis practices.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Narsingh R. Nirala ◽  
Yifat Harel ◽  
Jean-Paul Lellouche ◽  
Giorgi Shtenberg

Abstract Background Haptoglobin is an acute-phase protein used as predicting diagnostic biomarker both in humans (i.e., diabetes, ovarian cancer, some neurological and cardiovascular disorders) and in animals (e.g., bovine mastitis). The latter is a frequent disease of dairy industry with staggering economical losses upon decreased milk production and increased health care costs. Early stage diagnosis of the associated diseases or inflammation onset is almost impossible by conventional analytical manners. Results The present study demonstrates a simple, rapid, and cost-effective label-free chemiluminescence bioassay based on magnetite nanoparticles (MNPs) for sensitive detection of haptoglobin by employing the specific interaction of hemoglobin-modified MNPs. The resulting haptoglobin-hemoglobin complex inhibits the peroxidase-like activity of luminol/H2O2-hemoglobin-MNPs sensing scheme and reduces the chemiluminescence intensities correspondingly to the innate haptoglobin concentrations. Quantitative detection of bovine haptoglobin was obtained within the range of 1 pg mL−1 to 1 µg mL−1, while presenting 0.89 pg mL−1 limit of detection. Moreover, the influence of causative pathogenic bacteria (i.e., Streptococcus dysgalactiae and Escherichia coli) and somatic cell counts (depicting healthy, sub-clinical and clinical mastitis) on the emitted chemiluminescence radiation were established. The presented bioassay quantitative performances correspond with a standardized assay kit in differentiating dissimilar milk qualities. Conclusions Overall, the main advantage of the presented sensing concept is the ability to detect haptoglobin, at clinically relevant concentrations within real milk samples for early bio-diagnostic detection of mastitis and hence adjusting the precise treatment, potentially initiating a positive influence on animals’ individual health and hence on dairy farms economy.


2020 ◽  
Vol 16 (6) ◽  
pp. 744-752
Author(s):  
Kuan Luo ◽  
Xinyu Jiang

Background: Diabetes Mellitus (DM) is a major public metabolic disease that influences 366 million people in the world in 2011, and this number is predicted to rise to 552 million in 2030. DM is clinically diagnosed by a fasting blood glucose that is equal or greater than 7 mM. Therefore, the development of effective glucose biosensor has attracted extensive attention worldwide. Fluorescence- based strategies have sparked tremendous interest due to their rapid response, facile operation, and excellent sensitivity. Many fluorescent compounds have been employed for precise analysis of glucose, including quantum dots, noble metal nanoclusters, up-converting nanoparticles, organic dyes, and composite fluorescent microspheres. Silicon dot as promising quantum dots materials have received extensive attention, owing to their distinct advantages such as biocompatibility, low toxicity and high photostability. Methods: MnO2 nanosheets on the Si nanoparticles (NPs) surface serve as a quencher. Si NPs fluorescence can make a recovery by the addition of H2O2, which can reduce MnO2 to Mn2+, and the glucose can thus be monitored based on the enzymatic conversion of glucose by glucose oxidase to generate H2O2. Therefore, the glucose concentration can be derived by recording the fluorescence recovery spectra of the Si NPs. Results: This probe enabled selective detection of glucose with a linear range of 1-100 μg/mL and a limit of detection of 0.98 μg/mL. Compared with the commercial glucometer, this method showed favorable results and convincing reliability. Conclusion: We have developed a novel method based on MnO2 -nanosheet-modified Si NPs for rapid monitoring of blood glucose levels. By combining the highly sensitive H2O2/MnO2 reaction with the excellent photostability of Si NPs, a highly sensitive, selective, and cost-efficient sensing approach for glucose detection has been designed and applied to monitor glucose levels in human serum with satisfactory results.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2940
Author(s):  
Antonella Curulli

Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.


Author(s):  
Rahul Kumar ◽  
G.B.V.S. Lakshmi ◽  
Tarun Kumar Dhiman ◽  
Kedar Singh ◽  
Pratima R. Solanki

Sign in / Sign up

Export Citation Format

Share Document