scholarly journals Towards Microorganism-Based Biofuel Cells: The Viability of Saccharomyces cerevisiae Modified by Multiwalled Carbon Nanotubes

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 954 ◽  
Author(s):  
Ingrida Bruzaite ◽  
Juste Rozene ◽  
Inga Morkvenaite-Vilkonciene ◽  
Arunas Ramanavicius

This research aimed to evaluate the toxic effect of multi-walled carbon nanotubes (MW-CNTs) on yeast cells in order to apply MW-CNTs for possible improvement of the efficiency of microbial biofuel cells. The SEM and XRD analysis suggested that here used MW-CNTs are in the range of 10–25 nm in diameter and their structure was confirmed by Raman spectroscopy. In this study, we evaluated the viability of the yeast Saccharomyces cerevisiae cells, affected by MW-CNTs, by cell count, culture optical density and atomic force microscopy. The yeast cells were exposed towards MW-CNTs (of 2, 50, 100 μg/mL concentrations in water-based solution) for 24 h. A mathematical model was applied for the evaluation of relative growth and relative death rates of yeast cells. We calculated that both of the rates are two times higher in the case if yeasts were treated by 50, 100 μg/mL of MW-CNTs containing solution, comparing to that treated by 0 and 2 μg/mL c of MW-CNTs containing solution. It was determined that the MW-CNTs have some observable effect upon the incubation of the yeast cells. The viability of yeast has decreased together with MW-CNTs concentration only after 5 h of the treatment. Therefore, we predict that the MW-CNTs can be applied for the modification of yeast cells in order to improve electrical charge transfer through the yeast cell membrane and/or the cell wall.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2272
Author(s):  
Sonia Martel Martín ◽  
Rocío Barros ◽  
Brixhilda Domi ◽  
Carlos Rumbo ◽  
Mateo Poddighe ◽  
...  

Carbon nanotubes (CNTs) have attracted the attention of academy and industry due to their potential applications, being currently produced and commercialized at a mass scale, but their possible impact on different biological systems remains unclear. In the present work, an assessment to understand the toxicity of commercial pristine multi-walled carbon nanotubes (MWCNTs) on the unicellular fungal model Saccharomyces cerevisiae is presented. Firstly, the nanomaterial was physico-chemically characterized, to obtain insights concerning its morphological features and elemental composition. Afterwards, a toxicology assessment was carried out, where it could be observed that cell proliferation was negatively affected only in the presence of 800 mg L−1 for 24 h, while oxidative stress was induced at a lower concentration (160 mg L−1) after a short exposure period (2 h). Finally, to identify possible toxicity pathways induced by the selected MWCNTs, the transcriptome of S. cerevisiae exposed to 160 and 800 mg L−1, for two hours, was studied. In contrast to a previous study, reporting massive transcriptional changes when yeast cells were exposed to graphene nanoplatelets in the same exposure conditions, only a small number of genes (130) showed significant transcriptional changes in the presence of MWCNTs, in the higher concentration tested (800 mg L−1), and most of them were found to be downregulated, indicating a limited biological response of the yeast cells exposed to the selected pristine commercial CNTs.


Author(s):  
Tanjheel H. Mahdi ◽  
Mohammad E. Islam ◽  
Mahesh V. Hosur ◽  
Alfred Tcherbi-Narteh ◽  
S. Jeelani

Mechanical and viscoelastic properties of polymer nanocomposites reinforced with carboxyl functionalized multiwalled carbon nanotubes (COOH-MWCNT), montmorillonite nanoclays (MMT) and MWCNT/MMT binary nanoparticle were investigated. In this study, 0.3 wt. % of COOH-MWCNT, 2 wt. % of MMT and 0.1 wt. % COOH-MWCNT/2 wt. % MMT binary nanoparticles by weight of epoxy were incorporated to modify SC-15 epoxy resin system. The nanocomposites were subjected to flexure test, dynamic mechanical and thermomechanical analyses. Morphological study was conducted with scanning electron microscope. Addition of each of the nanoparticles in epoxy showed significant improvement in mechanical and viscoelastic properties compared to those of control ones. But, best results were obtained for addition of 0.1% MWCNT/2% MMT binary nanoparticles in epoxy. Nanocomposites modified with binary nanoparticles exhibited about 20% increase in storage modulus as well as 25° C increase in glass transition temperature. Flexural modulus for binary nanoparticle modified composites depicted about 30% improvement compared to control ones. Thus, improvement of mechanical and viscoelastic properties was achieved by incorporating binary nanoparticles to epoxy nanocomposites. The increase in properties was attributed to synergistic effect of MWCNTs and nanoclay in chemically interacting with each other and epoxy resin as well as in arresting and delaying the crack growth once initiated.


2017 ◽  
Vol 19 (3) ◽  
pp. 61-67 ◽  
Author(s):  
Bashaer J. Kahdum ◽  
Abbas J. Lafta ◽  
Amir M. Johdh

Abstract In this study, some types of composites consisting of multi-walled carbon nanotubes (MWCNTs) and spinel oxide (Co, Ni)3O4 were synthesized by simple evaporation method. These composites were characterized by UV–Vis diffuse reflectance spectroscopy, X-rays diffraction(XRD), Scanning electron microscopy (SEM) and specific surface area(SBET). The photocatalytic activity of the prepared composites was investigated by the following removal of Bismarck brown G (BBG) dye from its aqueous solutions. The obtained results showed that using MWCNTs in combination with spinel oxide to produced composites (spinel/MWCNTs) which succeeded in increasing the activity of spinel oxide and exhibited higher photocatalytic activity than spinel oxide alone. Also it was found that, multiwalled carbon nanotubes were successful in increasing the adsorption and improving the activity of photocatalytic degradation of Bismarck brown G dye(BBG). The obtained results showed that spinel/MWCNTs was more active in dye removal in comparison with each of spinel oxide and MWCNTs alone under the same reaction conditions. Also band gap energies for the prepared composites showed lower values in comparison with neat spinel. This point represents a promising observation as these composites can be excited using a lower energy radiation sources.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yitian Peng ◽  
Zhonghua Ni

The oxidized multiwalled carbon nanotubes (MWCNTs) were modified with stearic acid (SA) molecules. The SA-modified MWCNTs were characterized with scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy. The tribological properties of the oxidized and SA-modified MWCNTs as additives in water were comparatively investigated with a four-ball tester. The results showed the SA-modified MWCNTs in water have better tribological properties including friction reduction and antiwear than oxidized MWCNTs. The possible mechanism of SA-modified MWCNT as an additive in water was discussed. This research provides the opportunity for the lubricant application of MWCNTs.


RSC Advances ◽  
2016 ◽  
Vol 6 (104) ◽  
pp. 102582-102594 ◽  
Author(s):  
Yan Lin ◽  
Qi Liu ◽  
Jinchen Fan ◽  
Kexuan Liao ◽  
Jiawei Xie ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have been considered as good catalyst supporting materials, and their dispersion and functionalization are important, challenging problems for high-performance composite catalysts.


RSC Advances ◽  
2015 ◽  
Vol 5 (56) ◽  
pp. 44840-44846 ◽  
Author(s):  
Neda Mohaghegh ◽  
Masoud Faraji ◽  
Fereydoon Gobal ◽  
Mohammad Reza Gholami

MWCNTs/Ag/TiO2NTs plates were synthesized via electrochemical reduction of functionalized multiwalled carbon nanotubes (MWCNTs) on Ag/TiO2NTs.


1999 ◽  
Vol 593 ◽  
Author(s):  
D. Tekleab ◽  
R. Czerw ◽  
A. Rubio ◽  
P.M. Ajayan ◽  
D.L. Carroll

ABSTRACTWe report the use of high power ultrasonic agitation to create inelastic deformations in multiwalled carbon nanotubes. Using STM coupled with TEM we show that this damage can range from kinking to breaking of continuous tube walls into segments. Such deformed tubes provide an insight into the role of re-hybridization in the electrical and mechanical properties of tubes.


2015 ◽  
Vol 19 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Chantelle L. Phillips ◽  
Clarence S. Yah ◽  
Sunny E. Iyuke ◽  
Karl Rumbold ◽  
Viness Pillay

Sign in / Sign up

Export Citation Format

Share Document