scholarly journals Charging Effect by Fluorine-Treatment and Recess Gate for Enhancement-Mode on AlGaN/GaN High Electron Mobility Transistors

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2116
Author(s):  
Soo Cheol Kang ◽  
Hyun-Wook Jung ◽  
Sung-Jae Chang ◽  
Seung Mo Kim ◽  
Sang Kyung Lee ◽  
...  

An enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron- mobility-transistor was fabricated using a recess gate and CF4 plasma treatment to investigate its reliable applicability to high-power devices and circuits. The fluorinated-gate device showed hysteresis during the DC current-voltage measurement, and the polarity and magnitude of hysteresis depend on the drain voltage. The hysteresis phenomenon is due to the electron trapping at the Al2O3/AlGaN interface and charging times longer than milliseconds were obtained by pulse I-V measurement. In addition, the subthreshold slope of the fluorinated-gate device was increased after the positive gate bias stress because of the two-dimensional electron gas reduction by ionized fluorine. Our systematic observation revealed that the effect of fluorine ions should be considered for the design of AlGaN/GaN power circuits.

2015 ◽  
Vol 764-765 ◽  
pp. 486-490
Author(s):  
Chih Hao Wang ◽  
Liang Yu Su ◽  
Finella Lee ◽  
Jian Jang Huang

We demonstrate a novel design of large-size device in AlGaN/GaN high-electron-mobility transistor (HEMT). Depletion mode (D-mode) HEMTs and enhancement mode (E-mode) HEMTs are fabricated in our research. The saturation current of D-mode HEMTs is over 6A. By using Cascode structure, the D-mode HEMT becomes a normally-off device efficiently, and the threshold voltage of it rises from-7V to 2V. By using BCB (Benzocyclobutene) as the passivation, the E-mode HEMT shows an excellent characteristic. Also, when the VGS of the E-mode HEMT is over 9V, it still shows a good performance.


Author(s):  
Yu-Chen Lai ◽  
Yi-Nan Zhong ◽  
Ming-Yan Tsai ◽  
Yue-Ming Hsin

AbstractThis study investigated the gate capacitance and off-state characteristics of 650-V enhancement-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after various degrees of gate stress bias. A significant change was observed in the on-state capacitance when the gate stress bias was greater than 6 V. The corresponding threshold voltage exhibited a positive shift at low gate stress and a negative shift when the gate stress was greater than 6 V, which agreed with the shift observation from the I–V measurement. Moreover, the off-state leakage current increased significantly after the gate stress exceeded 6 V during the off-state characterization although the devices could be biased up to 1000 V without breakdown. The increase in the off-state leakage current would lead to higher power loss.


2006 ◽  
Vol 45 (No. 35) ◽  
pp. L932-L934 ◽  
Author(s):  
Li-Hsin Chu ◽  
Heng-Tung Hsu ◽  
Edward-Yi Chang ◽  
Tser-Lung Lee ◽  
Sze-Hung Chen ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 546 ◽  
Author(s):  
Wojciech Wojtasiak ◽  
Marcin Góralczyk ◽  
Daniel Gryglewski ◽  
Marcin Zając ◽  
Robert Kucharski ◽  
...  

AlGaN/GaN high electron mobility transistors on semi-insulating bulk ammonothermal GaN have been investigated. By application of regrown ohmic contacts, the problem with obtaining low resistance ohmic contacts to low-dislocation high electron mobility transistor (HEMT) structures was solved. The maximum output current was about 1 A/mm and contact resistances was in the range of 0.3–0.6 Ω ·mm. Good microwave performance was obtained due to the absence of parasitic elements such as high access resistance.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950190
Author(s):  
Hai Li Wang ◽  
Peng Yang ◽  
Kun Xu ◽  
Xiang Yang Duan ◽  
Shu Xiang Sun

In this paper, we investigated the impact of thickness and mole fraction AlInGaN back barrier on the DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) by numerical simulation. The simulations are performed using the hydrodynamic transport model (HD). The simulation results indicated that an inserted AlInGaN back barrier with increasing thickness and mole fraction could effectively confine the electron in the channel, resulting in a significant improvement of the channel current and transconductance. Additionally, the variation of conduction band offset and the increase of total number electron in the channel led to the threshold voltage moving toward a more negative value.


Sign in / Sign up

Export Citation Format

Share Document